Abstract

Research Article

Bacillus amyloliquefaciens as a plant growth promoting bacteria with the interaction with of grass salt Distichlis palmeri (Vasey) under field conditions, in desert of Sonora, Mexico

Rueda Puente Edgar O*, Ruiz Alvarado Cristina, Jesús Borboa Flores, Victor Cardenas Salazar, Soto Ortiz Roberto and Lourdes Díaz Cervantes

Published: 02 October, 2018 | Volume 2 - Issue 3 | Pages: 059-067

The halophyte Distichlis palmeri (Vasey) is a plant resource with high potential to be harvested in the coastal areas of northwestern Mexico; enlarge the knowledge and domestication for its incursion into the agricultural sector, plays an important role for arid areas with saline intrusion problems. However, its productivity depends on the supplementary supply of nitrogen, as well as other essential macro and micronutrients. The microorganisms considered beneficial are an alternative to chemical fertilization, highlighting those Plant Growth Promoting Bacteria (PGPB). In the present study, the inoculation of the Bacillus amyloliquefaciens (B.a.) as a halobacterium PGPB was evaluated to know the response in seeds of Distichlis spicatai obtained from natural population from colorado river in Delta north of the Gulf of California. Wild seed was collected and germinated previously inoculated with B. a., and sowed in germinated beds. Later, seedlings were planted under field and salinity conditions in the coast of Hermosillo, Sonora. Three treatments were examined (T1: B.a., T2: Chemical fertilization, T3: Negative control), with four repetitions each treatment. Each repetition consisted of experimental plots of 5 x 5 m, with a separation of 1 m between them. The harvest was carried out 600 days after sowing. The results indicate that treatments inoculated with halobacteria B.a., showed significant results in crude protein, non-protein nitrogen, neutral detergent fiber and acid detergent fiber, as well as spike length and number of seeds. The results obtained suggests the feasibility of biofertilizers where biomass and seed production are significant compared to non-inoculated controls.

Read Full Article HTML DOI: 10.29328/journal.jpsp.1001021 Cite this Article Read Full Article PDF

Keywords:

Distichlis palmeri; Halophytes; Cereals; Salinity; Adaptation; Plant growth promoting bacteria

References

  1. Valiente BA. La conservación de los desiertos: un desafío. PRONATURA. 1996; 4: 34-37.
  2. Toledo VM. Ordóñez MJ. El panorama de la biodiversidad en México. Una revisión de los hábitats terrestres. In: Ramamoorthy TP.; R. Bye; A. Lot y J. Fa (Comp.) Diversidad Biológica de México. Instituto de Biología, UNAM. México. 1998; 791.
  3. Haro A, J.L. Seminario sobre plantas halófitas. Fenología y Propagación de Distichlis palmeri (Vasey). Depto. de Agricultura y Ganadería. Universidad de Sonora. Hermosillo, Sonora. 1989; 1-5.
  4. Araiza QH. Las Plantas Halófitas del Golfo de California. In: memorias del II Congreso Nacional de Halófitas. Memorias. 1988; 4-10.
  5. Yensen SB, Weber CW. Composition of Distichlis palmeri Grain, a Saltgrass. J. Food Science. 1986; 51: 1089-1090. Ref.: https://goo.gl/MeaPDS
  6. Shreve F, Wiggins IL. Vegetation and flora of the Sonoran Desert. I. Stanford, CA, USA. 1964. Ref.: https://goo.gl/sDjDCZ
  7. Gould F, Moran R. The grasses of Baja California, México. Memories 12th. Meeting of the Soc Nat Hist. San Diego, CA, USA. 1981.
  8. Horvath J. Distichlis stricta. Saltgrass, desert saltgrass. 2018; Ref.: https://goo.gl/hNwn23
  9. Uchytil, RJ. Distichlis spicatai. 2018. USDA, Forest Service, Rocky Mountain Research Station, Fire Sciences Lab. Fire Effects Information. 2018. Ref.: https://goo.gl/BZhBxp
  10. Arredondo JT, García-Moya E, Kobashi J. Efecto de la temperatura, el fotoperíodo y la salinidad en el crecimiento y fisiología de Distichlis spicatai. Agrociencia 1991; 25: 103-122.
  11. Lugg DG. The potential of saltgrass as a forage grass irrigated with saline water. Project No. 1345653. 2018; Ref.: http:// wrri.nms.edu/publish/techrpt/abstracts/abs162.html
  12. Martínez B. Producción agraria ecológica. En: Revista de desarrollo rural y cooperativismo agrario. Universidad de Zaragoza. 1996; 5: Ref.: https://goo.gl/N9jzTb
  13. Jena P, Adhya T, Rao V. Nitrogen fixation in Azospirillum sp. isolated from rice and soil as influenced by carbofuran and combined nitrogen Zentralbl Microbiology. 1992; 147: 340-344. Ref.: https://goo.gl/g3jwrd
  14. Gamo T, Sang B. Growth-promoting Azospirillum spp isolated from rice roots of several non-gramineus crops in Japan. Soil Science Plant Nutrition. 1990; 37: 455-461. Ref.: https://goo.gl/kMs6f4
  15. Okon Y, Labandera G. Agronomic applications of Azospirillum: and evaluation of 20 years worlwide field inoculation. Soil Biology & Biochemistry. 1994; 26: 1591-1601. Ref.: https://goo.gl/97D2iR
  16. Buckman, H. Brady N. Naturaleza y propiedades de los suelos. Ed. Montaner y Simon S.A. España. 1977; 589. Ref.: https://goo.gl/mNRC8X
  17. De Troch P, Vaderleyden J. Surface properties and motility of Rhizobium and Azospirillum in relation to plant root attachment. Microbiology Ecology. 1996; 32:149-169. Ref.: https://goo.gl/RqmyWU
  18. Bashan Y, Ream Y, Levanony H, Sade A. Non-specific responses in plant growth, yield, and root colonization of noncereal crop plant to inoculation with Azospirillum brasilense cd. Canadian Journal Botany. 1989; 67: 1317-1324. Ref.: https://goo.gl/2TSy8o
  19. Castellanos CT. Respuesta de la superficie de la bacteria promotora de crecimiento de plantas Azospirillum spp. a estímulos externos. Tesis Doctoral. Centro de Investigaciones Biológicas del Noroeste S.C. La Paz, B.C.S. México. 1998; 7.
  20. Tarrand J, Krieg N, Bobereiner J. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. Nov. and two species, Azospirillum lipoferum (Beijerinck) comb. Nov. and Azospirillum brasilense sp. Nov. Can J Microbiol. 1978; 24: 967-980. Ref.: https://goo.gl/rH4ip3
  21. Magalhaes F, Baldani J, Souto S, Kuykendall J, Bodereiner J. A new acidtolerant Azospirillum species. Academia Brasileña de Ciencias. 1983; 55: 417-430. Ref.: https://goo.gl/jXQg2p
  22. Khammas K, Ageron E, Grimont P, Kaiser P. Azospirillum irakense sp. Nov. a nitrogen-fixing bacterium associated with the roice roots and rhizosphere soil. Res Microbiol. 1989; 140: 679-693. Ref.: https://goo.gl/1BrCPF
  23. Reinhold, B., Hurek, T., Fendrik, I., Pot, B., Gillis, M., Kersters, K., Thielmans, S. and De Ley, J. Azospirillum halopraeferens sp. nov. a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca L. Kunth). International Journal of Systematic Bacteriology. 1987; 37:43-51. Ref.: https://goo.gl/65jYRV
  24. Carrillo A, Puente M, Castellanos T, y Bashan Y. Aplicaciones Biotecnologicas de Ecologia Microbiana. Manual de Laboratorio. Pontificia Universidad Javeriana, Santafé de Bogotá, Colombia- Centro de Investigaciones Biológicas del Noroeste La Paz, Baja California Sur, México. 1998; 51.
  25. Chapman, H. D. Pratt PF. Método de Análisis para Suelos, Plantas y Agua. Ed. Trillas. México. 1979; 113-114. Ref.: https://goo.gl/1XrLtq
  26. Allison EL, Brown JM, Howard HE. Diagnóstico y Rehabilitación de Suelos Salinos y Sódicos. Ed. Limusa. México. 1980; 106.
  27. Millar CE, Turk LM, Forth HD. Fundamentos de la Ciencia del Suelo. Editorial CECSA. México. 1981 479.
  28. Jackson ML. Análisis Químico de Suelos. Ediciones Omega. Tercera Edición. Barcelona España. 1976; 350.
  29. Shourbagy MN, Yensen NP. Siembra directa de Distichlis palmeri en suelos irrigados con agua de mar. En: Memoria del VII Simposio Sobre Medio Ambiente del Golfo de California. Loreto, B.C.S., México. 1982; 57-58.
  30. Richards E. Guía sobre la Calidad de las Aguas de Riego. Handbook No. 50. Departamento de Agricultura de los Estados Unidos. Washington, D.C. 1954; 80. Ref.:
  31. De la Loma LJ. Experimentación Agrícola. Editorial Hispano-Americana S.A. México. 1980; 229.
  32. Glenn EP, Fontes M, Yensen N. Productivity of halophytes Irrigated With Hypersaline Seawater in the Sonora Desert in Biosaline Research. Ed. San Pietro Anthony, Plenum, New York. 1982; 491-494. Ref.: https://goo.gl/pjtejz
  33. SAS/STAT User´s Guide 6.08. SAS Institute Inc. Carey, NC, USA. 2001;
  34. Tien T, Gaskins M, Hubbell D. Plant growth substances produced by Azospirillum brasilenese and their effect on the growth of pearl millet (Pennisetum americanum L.) Applied Environmental Microbiology. 1979; 20: 1016-1021. Ref.: https://goo.gl/BXQb2v
  35. Box GE, William GH, Stuart H. Estadística para Investigadores. Ed. Reverté, Barcelona España. 1993; 363-384. https://goo.gl/zTJACN
  36. Zexun L, Wei S. Effect of cultural conditions on IAA biosynthesis by Klebsiella oxytoca SG-11.Chinese Journal of Applied and Enviromental Biolgy. 2000; 6: 66-69. Ref.: https://goo.gl/bXVMae
  37. Renganathan P, Ruíz-Alvarado C, Hernández-Montiel LG, Duraisamy P, Rueda- Puente EO. Evaluation of genetic diversity in germplasm of paprika (Capsicum spp.) using random amplified polymorphic DNA (RAPD) markers. J Plant Sci Phytopathol. 2017; 1: 080-086. Ref.: https://goo.gl/dhbdDo
  38. Puente M, Bashan Y. Effect of inoculation with Azospirillum brasilense strains on germination and seedlings growth of the giant columnar cardon cactus (Pachycerus pringler). Symbiosis. 1993 15: 49-60. Ref.: https://goo.gl/1Sgf1W
  39. Goodfriend WL, Olsen MW, Frye RJ. Soil microfloral and microfaunal response to Salicornia bigelovii planting density and soil residue amendment. Plant and Soil. 2000; 1: 23- 32. Ref.: https://goo.gl/sCPm8U
  40. Díaz V, Ferrera C, Almaraz S, Alcántar G. Inoculation of plant growth-promoting bacteria in lettuce. Terra. 2001; 19: 327-335. Ref.: https://goo.gl/3rdhhR
  41. Arsac J, Lamothe C. Fages J. Growth enhancement of Maize (Zea Mays) through Azospirillum lipoferum inoculation: effect of plant genotype and bacterial concentration. Agronomie. 1990; 10: 640-654. Ref.: https://goo.gl/ii7FZg
  42. Puente M, Holguin G, Glick B, Bashan Y. Root-surface colonization of black mangrove seedlings by Azospirillum halopraeferens and Azospirillum brasilense in seawater. Microbiol. Ecology. 1999; 29: 283-292. Ref.: https://goo.gl/uA9d3Z
  43. El-khawas H, Adachi K. Identification and quantification of auxins in culture media of Azospirillum and Klebsiella and their effects on rice roots. Biology and Fertility of Soils. 1999; 29: 377-381. Ref.: https://goo.gl/rw4ugG
  44. Pérez-Silva R. Influencia de diferentes niveles de nitrógeno y poblaciones de plantas sobre los rendimientos de maíz (Zea mays L.) Agronomía Tropical. 1989; 27: 451-459. Ref.: https://goo.gl/rH54xE
  45. Itai C, Richmond A, Vaadia Y. The role of root cytokinins during water and salinity stress. Journal Botany. 1968; 63: 694-701.
  46. Khan M, Khan I, Khizar T. Plant growth regulators from species differing in salt tolerance as affected by soil salinity. Plant Soil. 1976; 45: 269-276. Ref.: https://goo.gl/vSvVib
  47. Conrad K, Bettin B, Neumann S. The cytokinin production of Azospirillum and Klebsiella possible ecological effects. In: M. Kaminek et al. (eds), Physiology and biochemistry of cytokinins in plants. Symposium Liblice, República de Checoslovaquia. 1992; 401-405.
  48. El-Shatnawi MKJ, Makhadmeh I. Ecophysiology of the Plant-Rhizosphere System. Journal Agronomy and Crop Science. 2001; 187: 1-9. Ref.: https://goo.gl/hjb3ca

Figures:

Figure 1

Figure 1

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?