Abstract

Commentary

Antiviral RNAi mediated Plant defense versus its suppression by viruses

Sunil Kumar Mukherjee* and Dinesh Gupta

Published: 25 January, 2019 | Volume 3 - Issue 1 | Pages: 001-008

The age-old battle between plants and viruses has many twists and turns. Plants acquired the RNAi factors to checkmate the viruses and the viruses encode VSRs to defeat RNAi for their own survival. Plants designed mechanisms to neutralize the toxic effects of VSRs and the viruses, in their turn, use host microRNAs to strengthen their infection processes. The infightings between these two entities will take different shapes with prolonged evolution and accordingly the researchers will dig these novel forms of duels not only to throw lights in the involved mechanisms but also to manipulate various antiviral strategies. Some of the research courses that might come up in the immediate future are discussed.

Read Full Article HTML DOI: 10.29328/journal.jpsp.1001025 Cite this Article Read Full Article PDF

References

  1. Agrawal N, Dasaradhi PV,  Mohmmed A,  Malhotra P,  Bhatnagar RK,  et al. RNA interference: biology:  mechanism:  and applications. Micro Mol Biol Rev. 2003; 67: 657-685. Ref.: https://goo.gl/yZVjzk
  2. Koonin EV, Dolja VV, Krupovic M. Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virol. 2015; 479-480: 2-25. Ref.: https://goo.gl/wsJprG
  3. Ma A, Mondragón RJ. Rich-Cores in Networks. PLoS One. 2015; 10: 1-13. Ref.: https://goo.gl/5iN9iU
  4. Rajewsky, Nikolaus, Jurga, Stefan, Barciszewski. In Plant Epigenetics. RNA Tech. 199-230. Ref.: https://goo.gl/twwyMH
  5. Yang Z, Li Y. Dissection of RNAi-based antiviral immunity in plants. Curr Opin Virol.2018; 32: 88-99. Ref.: https://goo.gl/eNnTC8
  6. Llave C. Virus-derived small interfering RNAs at the core of plant-virus interactions.Trends Plant Sci. 2010; 15: 701-707. Ref.: https://goo.gl/HbDbgP
  7. Wang XB, Jovel J, Udomporn P, Wang Y, Wu Q, et al. The 21-Nucleotide, but Not 22-Nucleotide, Viral Secondary Small Interfering RNAs Direct Potent Antiviral Defense by Two Cooperative Argonautes in Arabidopsis thaliana [W][OA]. Plant Cell. 2011; 23: 1625-1638. Ref.: https://goo.gl/qFWGKq
  8. Brosseau C, El Oirdi M, Adurogbangba A, Ma X, Moffett P. Antiviral Defense Involves AGO4 in an Arabidopsis–Potexvirus Interaction. Mol Plant-Microbe Int. 2016; 29: 878-888. Ref.: https://goo.gl/vyJsNT
  9. Hort Res. 2018; 5: 62-75. Ref.:
  10. Mirian SJ, Mohammadi AR, Karimi G, Nia KI, Motamedi G, et al. Survey on helminthic and protozoan contaminations in alimentary canal of ostrich at Tehran Province slaughterhouses. Viruses. 9: 256-276. Ref.: https://goo.gl/fi3gct
  11. Taochy C, Gursanscky NR, Cao J, Fletcher SJ, Dressel U, et al. A Genetic Screen for Impaired Systemic RNAi Highlights the Crucial Role of DICER-LIKE 2. Plant Physiol. 2017; 175: 1424-1437. Ref.: https://goo.gl/6dd2ou
  12. Qin C, Li B, Fan Y, Zhang X, Yu Z, et al. Roles of Dicer-Like Proteins 2 and 4 in Intra- and Intercellular Antiviral Silencing. Plant Physiol. 2017; 174: 1067-1081. Ref.: https://goo.gl/fXhm5m
  13. Guo Z, Lu J, Wang X, Zhan B, Li W, et al. Lipid flippases promote antiviral silencing and the biogenesis of viral and host siRNAs in Arabidopsis. Proc Acad Natl Sci (USA). 2017; 114: 1377-1382. Ref.: https://goo.gl/VzaYr8
  14. Guo Z, Wang XB, Wang Y, Li WX, Gal-On A, et al. Identification of a New Host Factor Required for Antiviral RNAi and Amplification of Viral siRNAs. Plant Physiol. 2017; 176: 1587-1597. Ref.: https://goo.gl/qv7qfL
  15. Simón-Mateo C, García JA. MicroRNA-guided processing impairs Plum pox virus replication, but the virus readily evolves to escape this silencing mechanism. J Virol. 2006; 80: 2429-2436. Ref.: https://goo.gl/TLb9on
  16. Deng P, Muhammad S, Cao M, Wu L. Biogenesis and regulatory hierarchy of phased small interfering RNAs in plants. Plant Biotech J. 2018; 16: 965-975. Ref.: https://goo.gl/6y4BqU
  17. Bivalkar-Mehla S, Vakharia J, Mehla R, Abreha M, Kanwar JR, et al. Viral RNA silencing suppressors (RSS): novel strategy of viruses to ablate the host RNA interference (RNAi) defense system. Virus Res. 2011; 155: 1-9. Ref.: https://goo.gl/ovBczc
  18. Zhao JH, Hua CL, Fang YY, Guo HS. The dual edge of RNA silencing suppressors in the virus-host interactions. Curr Opin Virol. 2016; 17: 39-44. Ref.: https://goo.gl/QkS6Hz
  19. Csorba T, Kontra L, Burgyán J. Viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virol. 2015; 479-480, 85-103. Ref.: https://goo.gl/mNuQoY
  20. Pérez-Cañamás M, Hernández C. Key importance of small RNA binding for the activity of a glycine-tryptophan (GW) motif-containing viral suppressor of RNA silencing. J Biol Chem. 2015; 290: 3106-3120. Ref.: https://goo.gl/Ankwiw
  21. Pertermann R, Tamilarasan S, Gursinsky T, Gambino G, Schuck J, et al. A Viral Suppressor Modulates the Plant Immune Response Early in Infection by Regulating MicroRNA Activity. mBio. 2018’ 9: e00419-18. Ref.: https://goo.gl/SL7tWw
  22. Incarbone M, Zimmermann A, Hammann P, Erhardt M, Michel F, et al. Neutralization of mobile antiviral small RNA through peroxisomal import. Nat Plant. 2017; 3: 17094. Ref.: https://goo.gl/oL3w2K
  23. Li F, Wang A. RNA decay is an antiviral defense in plants that is counteracted by viral RNA silencing suppressors. PLos Pathog. 2018; 14: e1007228. Ref.: https://goo.gl/anRxTq
  24. Pumplin N, Voinnet O. RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev (Microbiol). 2013; 11: 745-760. Ref.: https://goo.gl/6yYLYd
  25. Chen L, Yan Z, Xia Z, Cheng Y, Jiao Z, et al. A Violaxanthin Deepoxidase Interacts with a Viral Suppressor of RNA Silencing to Inhibit Virus Amplification. Plant Physiol. 2017; 175:1774-1794. Ref.: https://goo.gl/sedWUc
  26. Shen Q, Hu T, Bao M, Cao L, Zhang H, et al. Tobacco RING E3 Ligase NtRFP1 Mediates Ubiquitination and Proteasomal Degradation of a Geminivirus-Encoded βC1. Mo Plant. 2016; 9: 911-925. Ref.: https://goo.gl/4HSfhS
  27. Jeon EJ, Tadamura K, Murakami T, Inaba JI, Kim BM, et al. rgs-CaM Detects and Counteracts Viral RNA Silencing Suppressors in Plant Immune Priming. J Virol. 2017; 91-e00761-17. Ref.: https://goo.gl/D5UYNM
  28. Várallyay E, Válóczi A, Agyi A, Burgyán J, Havelda Z. Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO J. 2010; 29: 3507-3519. Ref.: https://goo.gl/LXHHCa
  29. Zheng L, Zhang C, Shi C, Yang Z, Wang Y, et al. Rice stripe virus NS3 protein regulates primary miRNA processing through association with the miRNA biogenesis factor OsDRB1 and facilitates virus infection in rice. PLos Pathog. 2017; 13: e1006662. Ref.: https://goo.gl/uxY2XZ
  30. Scientific Repts. 2016; 6: 20167-20180.
  31. Feng J, Liu S, Wang M, Lang Q, Jin C. Identification of microRNAs and their targets in tomato infected with Cucumber mosaic virus based on deep sequencing. Planta. 2014; 240: 1335-1352. Ref.: https://goo.gl/nLh15N
  32. Iki T, Cléry A, Bologna NG, Sarazin A, Brosnan CA, et al. Structural Flexibility Enables Alternative Maturation, ARGONAUTE Sorting and Activities of miR168, a Global Gene Silencing Regulator in Plants. Mol Plant. 2018; 11: 1008-1023. Ref.: https://goo.gl/xknqL2
  33. Várallyay E, Havelda Z. Unrelated viral suppressors of RNA silencing mediate the control of ARGONAUTE1 level. Mol Plant Pathol. 2013; 14: 567-575. Ref.: https://goo.gl/aqxqUd
  34. Noman A, Aqeel M, Deng J, Khalid N, Sanaullah T, et al. Biotechnological Advancements for Improving Floral Attributes in Ornamental Plants. Front Plant Sci. 2017; 8: 1760-1769. Ref.: https://goo.gl/x7nhm6
  35. Honda T, Yamamoto K, Yo A, Takarada Y, Shibata H. PCR primer to detect cholera toxin-producing Vibrio cholera. ELIFE: Microbiol and Infect. diseses/ Plant Biol. 2015; 4:  Ref.: https://goo.gl/8jH14n
  36. Kravchik M, Sunkar R, Damodharan S, Stav R, Zohar M, et al. Global and local perturbation of the tomato microRNA pathway by a trans-activated DICER-LIKE 1 mutant. J Exp Bot. 2014; 65: 725-739. Ref.: https://goo.gl/xcb58y
  37. Wang Z, Hardcastle TJ, Canto Pastor A, Yip WH, Tang S, et al. A novel DCL2-dependent miRNA pathway in tomato affects susceptibility to RNA viruses. Genes and Dev. 2018; 32: 1155-1160. Ref.: https://goo.gl/Jrii6P
  38. Virology J. 2010; 7: 281-296.
  39. Zhang C, Ding Z, Wu K, Yang L, Li Y, et al. Suppression of Jasmonic Acid-Mediated Defense by Viral-Inducible MicroRNA319 Facilitates Virus Infection in Rice. Mol Plant. 2016; 9: 1302-1314. Ref.: https://goo.gl/TCkmMe
  40. Cillo F, Mascia T, Pasciuto MM, Gallitelli D. Differential effects of mild and severe Cucumber mosaic virus strains in the perturbation of MicroRNA-regulated gene expression in tomato map to the 3' sequence of RNA 2. Mol Plant-Microbe Int. 2009; 22: 1239-1249. Ref.: https://goo.gl/bgTdAi
  41. Obbard DJ, Gordon KH, Buck AH, Jiggins FM. The evolution of RNAi as a defence against viruses and transposable elements. Phil Trans R Soc B. 2009; 364: 99-115. Ref.: https://goo.gl/3CEeFo
  42. Aguado LC, Schmid S, May J, Sabin LR, Panis M, et al. RNase III nucleases from diverse kingdoms serve as antiviral effectors. Nature. 2017; 547: 114-117. Ref.: https://goo.gl/HoRmYN
  43. Vazquez F, Blevins T, Ailhas J, Boller T, Meins F, Jr. Evolution of Arabidopsis MIR genes generates novel microRNA classes. Nucl Ac Res. 2008; 36: 6429-6438. Ref.: https://goo.gl/bWbgvQ
  44. Ying XB, Dong L, Zhu H, Duan CG, Du QS, et al. RNA-Dependent RNA Polymerase 1 from Nicotiana tabacum Suppresses RNA Silencing and Enhances Viral Infection in Nicotiana benthamiana. Plant Cell. 2010; 22: 1358-1372. Ref.: https://goo.gl/snkReA
  45. Ishibashi K, Kezuka Y, Kobayashi C, Kato M, Inoue T, et al. Structural basis for the recognition–evasion arms race between Tomato mosaic virus and the resistance gene Tm-1. Proc Natl Acd Sc. U S A. 2014; 111: E3486-E3495. Ref.: https://goo.gl/vjZTfo

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?