Abstract

Research Article

Causal agents of Post-harvest Rot of Pumpkin (Cucurbita pepo L.) and their control using Indigenous Practices in Hong, Adamawa State

Anjili SM*, Kazi N and Chimbekujwo IB

Published: 19 July, 2019 | Volume 3 - Issue 2 | Pages: 062-066

Pumpkins (Cucurbita pepo) are grown all around the world for a variety of reasons ranging from agricultural purposes to commercial and ornamental sales. The pathogens causing the rot of pumpkin in the world include fungi, bacteria, and viruses. The study was aim to identify fungal pathogens of pumpkin rot during storage, as well as control measures of the diseases using wood ash, mango leaf and rice chaff. Three hundred and sixty-six (366) fruits of pumpkins were studied in Pela, Gaya and Kulinyi districts of Hong Local Government Area of Adamawa State. The diseased samples (fruits) were randomly purchased. Of all the districts visited, Kulinyi has the highest percentage of disease samples (43.82%) while the least is Gaya district with 21.35%. Potato Dextrose Agar (PDA) was used for the isolation of pathogens and these gave Fusarium solani, Aspergillus niger, Aspergillus flavus, and Phytophthora capsici. All the fungal isolates exhibited different degree of pathogenic effect on the pumpkin fruits. The pathogens are susceptible to treatment both In-vitro and In-vivo control trials with wood ash and mango leaf at p ≤ 0.05. Inhibition improved with increased in concentration of the wood ash and mango leaf. Rice chaff treatment equally proved worthwhile with significant inhibition compared to the control at p ≤ 0.05.

Read Full Article HTML DOI: 10.29328/journal.jpsp.1001033 Cite this Article Read Full Article PDF

Keywords:

Pumpkin fruit pathogens; Ash; Mango leaf; Rice chaff

References

  1. Neel R, Vandana Md N, Ibrahim Md. A Review on Curcubita pepo. International Journal of Pharmacognosy and Phytochemical Research. 2017; 9: 1190 -1194.
  2. Wolford R, Ban KE. Pumpkin and More. University of Illinois Extension. 2008; 19: 2014.
  3. Facciola S. Cormucopia. As Source Book of Edible Plant. Kamping Publication California, USA. 1990; 677.
  4. Agrios GN. Plant Pathology, Academic Press, New York 7. 2005.
  5. Kader AA. Post-harvest Technology of Horticultural Crops. University of California, Agriculture and Natural Resources. 2002; 3311.
  6. Davis RM, Gubler WD, Koike UC. Plant Pathology. University of California State wide. EPM Program. 2008; 78-80.
  7. Sommer NF. Strategies for control of post-harvest disease of selected commodities. In: Post-harvest Technology of Horticultural Crops. University of California Press.1985; 83-98.
  8. Hausbeck MK, Lamour KH. Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Disease. 2004; 88: 1292-1303.
  9. Erwin DC, Ribeiro OK. Phytophthora Diseases Worldwide. American Phytopathological Society, St. Paul, MN.1996.
  10. Thomas AZ. Fusarium Diseases of Cucurbits. Department of Plant Pathology, Cornell University.1998; 733.
  11. Ijato JY. Inhibitory Effects of Indigenous Plant Extracts (Zingiber officinale and Ocimum gratissimum) on Post-Harvest yam rot, in vitro. Journal of American Science. 2011; 7: 43-47.
  12. Bristone B, Chimbekujwo IB, Pukuma MS. Control of Post-harvest Fungal Rot of Sweet Potatoes (Ipomea batatas) in Yola. Nigerian Journal of Botany. 2011; 24: 43-51.
  13. Bonaldo SM, Schwan-Estrade KRF, Stangarlin JR, Tessmann D, Scapim CA. Fungitoxicity, Phytoalexins Elicitor Activity and Protection of Cucumber Against Collentotrichum lagenarium,by Eucalyptus citriodora Aqueous Extract. Fitopatologia Brasileira. 2004; 29: 128-134.
  14. Rodrigues E, Schwan-Estrada KRF, Fiori ACG, Stangarlin JR, Cruz MES. Fungitoxicity, phytoalexins Elicitor Activity and Protection of lettuce in Organic Growth Against Sclerotinia Sclerotiorum by Ginger Extract. Summa Phytopathologica. 2007; 33: 20-24.
  15. Aisha M, Basiri B, Chimbekujwo IB. Effect of Different Storage Method on development of Post-Harvest Rot of Solenoslemon rotundifolius (Poir). Journal of Biology Agriculture and Healthcare. 2013; 3: 136-139.
  16. Muhammed S, Suberu HA, Amusa NA, Agaji MD. The Effect of Soil Amendment with Sawdust and Rice Husks on the growth and incidence of seedling blight of Tamarrindus indica Linn caused by by Macrophomina phaseolina and Rhizoctonia solani. Moor J. Agric. Res. 2001; 2: 40-46.
  17. Anjili SM, Channya FK, Chimbekujwo IB. Fungi Associated with Post-harvest Spoilage of Date Palm (Phoenix dactylifera L.) in Yola, Adamawa State. International Journal of Research in Agriculture and Forestry. 2015; 2: 14-22.
  18. Fawole MO, Oso BA. Laboratory Manual of Microbiology. 1st edition. Spectrum Books Ltd, Ibadan, Nigeria.1995; 34-35.
  19. Robert AS, Hoekstra, Frisvad JC, Filtenborg O. Introduction to Food-borne Fungi. Printed by Ponsen and Looyen, Wageningen. The Netherlands.1996.
  20. Chukwuka KS, Okonko IO, Adekunle AA. Microbial Ecology of Organisms Causing Pawpaw (Carica papaya L.) Fruit Decay in Oyo State, Nigeria. American-Eurasian Journal of Toxicological Sciences. 2010; 2: 43-50.
  21. Nene Y, Thapilyal L. Poisoned food technique of fungicides in plant disease control.3rd Ed. Oxford and TBH Publishing Company, New Delhi. 2000.
  22. Bristone B. Identification and control of fungi associated with the post- harvest fungal rot of sweet potatoes (Ipomoea batatas) in Yola. Nigeria Journal of Botany. 2004; 24: 43-51.
  23. Anjili SM, Channya FK, Chimbekujwo IB. Control of Fungi Isolated from Date Palm Fruit in Yola, Adamawa State. Journal of Biology, Agriculture and Healthcare. 2016; 6: 9-16.
  24. Tsado EK, Aghotor P, Ebitemi G, Oyeleke SB, Gana RW. Fungi Associated with Spoilage of some Edible Vegetables in and Around Minna, Niger State, Nigeria. Global Journal of Biology, Agriculture and Health Sciences. 2013; 2: 110-113.
  25. Mapanda F, Mangwayana EN, Nyamangara J, Giller KE. ‘The effect of long-term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe’, Agricultural Ecosystem and Environment. 2005; 107:151-65.
  26. Amadioha AC, Obi VI. Control of Anthracnose Disease of Cowpea by Cymbopogon citratus and Ocimum gratissimum. Acta Phytopathologica et Entomologica Hungarica. 1999; 34: 85-89.
  27. Zakari BG, Chimbekujwo IB, Channya FK, Bristone B. In vitro Antifungal Activity of Selected Plant Diffusates against Post-Harvest Fruits Rot of pepper (Capsicum Spp. L.) in Yola. Global Journal of Biology, Agriculture and Health Sciences. 2015; 4: 142-148.
  28. Brian CF, Gwyn AB. An Overview of Plant Defenses against Pathogens and Herbivores. An Overview of Plant Defenses against Pathogens and Herbivores. The Plant Health Instructor. 2008.
  29. Babadoost M. The Fruit Rots of Pumpkin. Report on Plant Disease. University of Illinois Extension. RPD no. 950. 2012.
  30. Hausbeck MK, Keinath AP, Kousik CS, Matheron ME. Managing Phytophthora disease with fungicides. Phytopathology, APS Centennial celebration in Minneapolis, MN. 2008.
  31. Jamuna S, Subramaniam P, Karthika K. In vitro Antifungal Activity of Leaf and Root Exracts of the Medicinal Plant, Hypochaeris radicata L. International Journal of Pharmacy and Pharmceutical Sciences. 2013; 5: 758-761.
  32. Marjorie MC. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999; 12: 564-582. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10515903
  33. Jigna P, Sumitra C. In-vitro antimicrobial activities of extracts of Launaea procumbns Roxb. (Labiateae), Vitis vinifera L. (Vitaceae) and Cyperus rotundus L. (Cyperaceae). Afri. J. Biomed.Res. 2006; 9: 89-93.
  34. Mark WA, Channya KF, Chimbekujwo IB, Bristone B. Control of Colletotrichum capsici of cowpea in the Savanna using ash. Global Journal of Biology, Agriculture and Health Sciences. 2015; 4:136-141.
  35. Channya FK, Chimbekujwo IB. Pathogens of Post-harvest Fruits Rot of Plantain (Musa Parasidiaca L.) in South- Western Nigeria. Journal of Tropical Bioscience. 2002; 21-24.
  36. Oguntade TO, AA, Adekunle. Preservation of seeds against fungi using wood-ash of some tropical forest trees in Nigeria. African Journal of Microbiology Reserve. 2010; 4: 279-288.
  37. Aliyu TH, Balogun OS, Alade OO. Assessment of the Effect of Rate and Time of Rice-Husk Powder as an Organic Amendment on Cowpea (Vigna unguiculata L. Walp) Inoculated with cowpea mottle Virus. Agriculture and Biology Journal of North America. 2011; 2: 74-79.
  38. Muhammed S, Israr H, Ijaz AK, Abdur R, Ibadullah J, et al. Influence of Organic Mulches on Growth and Yield Components of Pea’s Cultivars. Greener Journal of Agricultural Sciences. 2013; 3: 652-657.

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?