Abstract

Research Article

Effect of chitosan and silicon oxide treatments on postharvest Valencia Late (Citrus × sinensis) fruits

Beltrán R*, Otesinova L, Cebrián N, Zornoza C, Breijo F, Reig J, Garmendia A and Merle H

Published: 06 October, 2021 | Volume 5 - Issue 3 | Pages: 065-071

The efficacy of chitosan and silicon oxide to prevent postharvest weight loss and fungi infection in 'Valencia Late' oranges was tested. Three silicon oxide concentrations (0.1%, 0.2%, 1%) were applied as preharvest treatments. Chitosan treatments were performed at the same concentrations in postharvest fruit. Preharvest applications were carried out by tractor spraying, while fruit were submerged for 30 seconds in baths with the chitosan concentrations in the postharvest applications. In both cases, a positive control (water treatment) and negative control (fungicide) were included. Treated fruit were stored in a chamber to simulate commercial storage conditions (4 ºC, 90% RH) for 9 weeks. After this time, the weight loss and damage caused by fungi due to natural infection were evaluated. Both silicon oxide and chitosan applications were effective in controlling natural infection by Penicillium species but had no positive effect on weight loss.

Read Full Article HTML DOI: 10.29328/journal.jpsp.1001063 Cite this Article Read Full Article PDF

Keywords:

Citrus; Oranges; Fruit disease; Penicillium digitatum; Penicillium italicum; Weight loss; Chitosan; Silicon oxide; Mancozeb; Imazalil

References

  1. Resource Database, Crops [WWW Document]. 2018. http://www.fao.org/faostat/en/#data/
  2. Liao HL, Alferez F, Burns JK. Assessment of blue light treatments on citrus postharvest diseases. Postharvest Biol Technol. 2013; 81: 81-88.
  3. Palou L. Penicillium digitatum, Penicillium italicum (green mold, blue mold). In Postharvest Decay. 2013; 45-102.
  4. Valencia‐Chamorro SA, Pérez‐Gago MB, Del Río MA, Palou L. Effect of Antifungal Hydroxypropyl Methylcellulose‐Lipid Edible Composite Coatings on Penicillium Decay Development and Postharvest Quality of Cold‐Stored “Ortanique” Mandarins. J Food Sci. 2010; 75: S418-S426. PubMed: https://pubmed.ncbi.nlm.nih.gov/21535515/
  5. Chien PJ, Chou CC. Antifungal activity of chitosan and its application to control post‐harvest quality and fungal rotting of Tankan citrus fruit (Citrus tankan Hayata). J Sci Food Agricul. 2016; 86: 1964-1969.
  6. Plaza P, Sanbruno A, Usall J, Lamarca N, Torres R, et al. Integration of curing treatments with degreening to control the main postharvest diseases of clementine mandarins. Postharvest Biol Technol. 2004; 34: 29-37.
  7. Shiekh RA, Malik MA, Al-Thabaiti SA, Shiekh MA. Chitosan as a novel edible coating for fresh fruits. Food Sci Technol Res. 2013; 19: 139-155.
  8. Lafuente MT, Alférez F, Romero P. Postharvest ethylene conditioning as a tool to reduce quality loss of stored mature sweet oranges. Postharvest Biol Technol. 2014; 94: 104-111.
  9. Bautista-Baños S, Hernández-Lauzardo AN, Velázquez-Del Valle MG, Hernández-López M, Barka EA, et al. Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Protection. 2006; 25: 108-118.
  10. Chien PJ, Sheu F, Lin HR. Coating citrus (Murcott tangor) fruit with low molecular weight chitosan increases postharvest quality and shelf life. Food Chemistry. 2007; 100: 1160-1164.
  11. Galed G, Fernández-Valle ME, Martínez A, Heras A. Application of MRI to monitor the process of ripening and decay in citrus treated with chitosan solutions. Magne Resona Imag. 2004; 22: 127-137.
  12. Romanazzi G, Karabulut OA, Smilanick JL. Combination of chitosan and ethanol to control postharvest gray mold of table grapes. Postharvest Biol Technol. 2007; 45: 134-140.
  13. Hong K, Xie J, Zhang L, Sun D, Gong D. Effects of chitosan coating on postharvest life and quality of guava (Psidium guajava L.) fruit during cold storage. Scientia Horticulturae. 2012; 144: 172-178.
  14. Han C, Zuo J, Wang Q, Xu L, Zhai B, et al. Effects of chitosan coating on postharvest quality and shelf life of sponge gourd (Luffa cylindrica) during storage. Sci Horticultur. 2014; 166: 1-8.
  15. Gol NB, Patel PR, Rao TR. Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biol Technol. 2013; 85: 185-195.
  16. El Ghaouth A, Ponnampalam R, Castaigne F, Arul J. Chitosan coating to extend the storage life of tomatoes. HortScience. 1992; 27: 1016-1018.
  17. Zeng K, Deng Y, Ming J, Deng L. Induction of disease resistance and ROS metabolism in navel oranges by chitosan. Sci Horticultur. 2010; 126: 223-228.
  18. Arnon H, Zaitsev Y, Porat R, Poverenov E. Effects of carboxymethyl cellulose and chitosan bilayer edible coating on postharvest quality of citrus fruit. Postharvest Biol Technol. 2014; 87: 21-26.
  19. El Guilli M, Hamza A, Clément C, Ibriz M, Ait Barka E. Effectiveness of postharvest treatment with chitosan to control citrus green mold. Agriculture. 2016; 6: 12.
  20. Sánchez-González L, Cháfer M, Chiralt A, González-Martínez C. Physical properties of edible chitosan films containing bergamot essential oil and their inhibitory action on Penicillium italicum. Carbohydrate Polymers. 2010; 82: 277-283.
  21. Kean T, Thanou M. Biodegradation, biodistribution and toxicity of Adv Drug Deliv Rev. 2010; 62: 3-11. PubMed: https://pubmed.ncbi.nlm.nih.gov/19800377/
  22. Saberi B, Golding JB, Marques JR, Pristijono P, Chockchaisawasdee S, et al. Application of biocomposite edible coatings based on pea starch and guar gum on quality, storability and shelf life of ‘Valencia’ oranges. Postharvest Biol Technol. 2018; 137: 9-20.
  23. He L, Liu Y, Mustapha A, Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res. 2011; 166: 207-215. PubMed: https://pubmed.ncbi.nlm.nih.gov/20630731/
  24. Sawai J, Yoshikawa T. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol. 2004; 96: 803-809. PubMed: https://pubmed.ncbi.nlm.nih.gov/15012819/
  25. Bi Y, Tian SP, Guo YR, Ge YH, Qin GZ. Sodium silicate reduces postharvest decay on Hami melons: induced resistance and fungistatic effects. Plant Dis. 2006; 90: 279-283. PubMed: https://pubmed.ncbi.nlm.nih.gov/30786549/
  26. Guo Y, Liu L, Zhao J, Bi Y. Use of silicon oxide and sodium silicate for controlling Trichothecium roseum postharvest rot in Chinese cantaloupe (Cucumis melo L.). Int J Food Sci Technol. 2007; 42: 1012-1018.
  27. Elsherbiny EA, Taher MA. Silicon induces resistance to postharvest rot of carrot caused by Sclerotinia sclerotiorum and the possible of defense mechanisms. Postharvest Biol Technol. 2018; 140: 11-17.
  28. Mohamed MAA, El-khalek AFA, Elmehrat HG. Pre-harvest Potassium Silicate, Chitosan and calcium chloride Application Improves Mango Fruits (Zebda Cv.) Quality and Storability. Egyptian J Horticulture. 2017; 44: 17-32.
  29. Liu J, Zong Y, Qin G, Li B, Tian S. Plasma membrane damage contributes to antifungal activity of silicon against Penicillium digitatum. Curr Microbiol. 2010; 61: 274-279. PubMed: https://pubmed.ncbi.nlm.nih.gov/20195609/
  30. Moscoso-Ramírez PA, Palou L. Preventive and curative activity of postharvest potassium silicate treatments to control green and blue molds on orange fruit. Eur J Plant Pathol. 2014; 138: 721-732.
  31. Yun JW, Kim SH, You JR, Kim WH, Jang JJ, et al. Comparative toxicity of silicon dioxide, silver and iron oxide nanoparticles after repeated oral administration to rats. J Appl Toxicol. 2015;35: 681-693. PubMed: https://pubmed.ncbi.nlm.nih.gov/25752675/
  32. R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. https://www.R-proyect.org
  33. RStudio Team. RStudio: Integrated Development for R. RStudio, Inc, Boston, MA. 2016. http://www.rstudio.com
  34. Holm S. A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian J Statist. 1979; 65-70.
  35. Hernández JF, Ruiz JM, Félix AR. Efecto de recubrimiento con Quitosano y cera comercial en la calidad de naranja 'valencia' durante el almacenamiento. Revista Iberoamericana de Tecnología Postcosecha. 2011; 12: 164-174.
  36. García-Saucedo C, Field JA, Otero-González L, Sierra-Álvarez R. Low toxicity of HfO2, SiO2, Al2O3 and CeO2 nanoparticles to the yeast, Saccharomyces cerevisiae. J Hazard Materials. 2011; 192: 1572-1579. PubMed: https://pubmed.ncbi.nlm.nih.gov/21782338/
  37. Karimiyan A, Najafzadeh H, Ghorbanpour M, Hekmati-Moghaddam SH. Antifungal effect of magnesium oxide, zinc oxide, silicon oxide and copper oxide nanoparticles against Candida albicans. Zahedan J Res Med Sci. 2015;17: 19-23.
  38. Youssef K, Ligorio A, Sanzani SM, Nigro F, Ippolito A. Control of storage diseases of citrus by pre-and postharvest application of salts. Postharvest Biol Technol. 2012; 72: 57-63.
  39. Ruffo-Roberto S, Youssef K, Hashim AF, Ippolito A. Nanomaterials as alternative control means against postharvest diseases in fruit crops. Nanomaterials. 2019; 9: 1752. PubMed: https://pubmed.ncbi.nlm.nih.gov/31835458/
  40. Sánchez-González L, Vargas M, González-Martínez C, Chiralt A, Chafer M. Use of essential oils in bioactive edible coatings: a review. Food Engineer Rev. 2011; 3: 1-16.
  41. Epstein E. Silicon. Annu Rev Plant Physiol Plant Mol Biol. 1999; 50: 641-664. PubMed: https://pubmed.ncbi.nlm.nih.gov/15012222/
  42. Li YH, Bi Y, Zhang HY, Ge YH, Liu J. Inhibiting effect of postharvest sodium silicate treatment on blue mould of pear (cv. Pingguoli). J Gansu Agri Univers. 2008; 6: 33.

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Figure 1

Figure 4

Figure 1

Figure 5

Figure 1

Figure 6

Similar Articles

Recently Viewed

  • Forest History Association of Wisconsin
    Ed Bauer* Ed Bauer*. Forest History Association of Wisconsin. J Radiol Oncol. 2024: doi: 10.29328/journal.jro.1001071; 8: 093-096
  • Synthesis of Carbon Nano Fiber from Organic Waste and Activation of its Surface Area
    Himanshu Narayan*, Brijesh Gaud, Amrita Singh and Sandesh Jaybhaye Himanshu Narayan*,Brijesh Gaud,Amrita Singh,Sandesh Jaybhaye. Synthesis of Carbon Nano Fiber from Organic Waste and Activation of its Surface Area. Int J Phys Res Appl. 2019: doi: 10.29328/journal.ijpra.1001017; 2: 056-059
  • Obesity Surgery in Spain
    Aniceto Baltasar* Aniceto Baltasar*. Obesity Surgery in Spain. New Insights Obes Gene Beyond. 2020: doi: 10.29328/journal.niogb.1001013; 4: 013-021
  • Tamsulosin and Dementia in old age: Is there any relationship?
    Irami Araújo-Filho*, Rebecca Renata Lapenda do Monte, Karina de Andrade Vidal Costa and Amália Cinthia Meneses Rêgo Irami Araújo-Filho*,Rebecca Renata Lapenda do Monte,Karina de Andrade Vidal Costa,Amália Cinthia Meneses Rêgo. Tamsulosin and Dementia in old age: Is there any relationship?. J Neurosci Neurol Disord. 2019: doi: 10.29328/journal.jnnd.1001025; 3: 145-147
  • Case Report: Intussusception in an Infant with Respiratory Syncytial Virus (RSV) Infection and Post-Operative Wound Dehiscence
    Lamin Makalo*, Orlianys Ruiz Perez, Benjamin Martin, Cherno S Jallow, Momodou Lamin Jobarteh, Alagie Baldeh, Abdul Malik Fye, Fatoumatta Jitteh and Isatou Bah Lamin Makalo*,Orlianys Ruiz Perez,Benjamin Martin,Cherno S Jallow,Momodou Lamin Jobarteh,Alagie Baldeh,Abdul Malik Fye,Fatoumatta Jitteh,Isatou Bah. Case Report: Intussusception in an Infant with Respiratory Syncytial Virus (RSV) Infection and Post-Operative Wound Dehiscence. J Community Med Health Solut. 2025: doi: 10.29328/journal.jcmhs.1001051; 6: 001-004

Read More

Most Viewed

Read More

Help ?