Abstract

Research Article

Evaluation of Biostimulants Based on Recovered Protein Hydrolysates from Animal By-products as Plant Growth Enhancers

H Pérez-Aguilar*, M Lacruz-Asaro and F Arán-Ais

Published: 03 July, 2023 | Volume 7 - Issue 2 | Pages: 042-047

Free amino acids-based biostimulants are gaining momentum in Europe for sustainable agriculture. They stimulate plant growth, improve crop productivity, and reduce reliance on harmful fertilizers. Enzymatic hydrolysis is used to develop biostimulants from animal by-products, such as greaves and protein-rich wastewater from processed animal proteins. The effectiveness of enzymatic hydrolysis depends on selecting the appropriate conditioning stage for the by-products, yielding protein in the range of 86% to 97%. These protein hydrolysates, with optimal amino acid compositions, are evaluated as biostimulants. Promising results show growth improvements of 17% to 31% in Chinese cabbage and lettuce seeds. The optimal dilution concentration ranges from 0.05% to 0.3%, depending on the protein hydrolysate used. The findings highlight the potential of these biostimulants to enhance plant growth and productivity while reducing environmental impact by replacing chemical fertilizers. They offer sustainable alternatives for promoting environmentally friendly practices in agriculture.

Read Full Article HTML DOI: 10.29328/journal.jpsp.1001104 Cite this Article Read Full Article PDF

Keywords:

Amino acids; Enzymatic hydrolysis; Wastewater; Rendering; protein recovery

References

  1. European Commission. Integrated Pollution Prevention and Control. Reference Document on Best Available Techniques in the Slaughterhouses and Animal By-products Industries. 2005. https://eippcb.jrc.ec.europa.eu/sites/default/files/2020-01/sa_bref_0505.pdf
  2. Cheng D, Liu Y, Ngo HH, Guo W, Chang SW, Nguyen DD, Zhang S, Luo G, Bui XT. Sustainable enzymatic technologies in waste animal fat and protein management. J Environ Manage. 2021 Apr 15;284:112040. doi: 10.1016/j.jenvman.2021.112040. Epub 2021 Feb 9. PMID: 33571854.
  3. Chuck-Hernández C, Ozuna C. Chapter 5 - Protein Isolates From Meat Processing By-Products. In: Galanakis CM, editor. Proteins: Sustainable Source, Processing and Applications. 2019; 131–62. https://www.sciencedirect.com/science/article/pii/B9780128166956000052
  4. Lapeña D, Vuoristo KS, Kosa G, Horn SJ, Eijsink VGH. Comparative Assessment of Enzymatic Hydrolysis for Valorization of Different Protein-Rich Industrial Byproducts. J Agric Food Chem. 2018 Sep 19;66(37):9738-9749. doi: 10.1021/acs.jafc.8b02444. Epub 2018 Sep 11. PMID: 30142267.
  5. Morimura S, Nagata H, Uemura Y, Fahmi A, Shigematsu T, Kida K. Development of an effective process for utilization of collagen from livestock and fish waste. Process Biochemistry. 2002 Jul 1; 37(12):1403–12. https://www.sciencedirect.com/science/article/pii/S0032959202000249
  6. Ohba R, Deguchi T, Kishikawa M, Arsyad F, Morimura S, Kida K. Physiological Functions of Enzymatic Hydrolysates of Collagen or Keratin Contained in Livestock and Fish Waste. Food Science and Technology Research. 2003;9(1):91–3.
  7. Pagán J, Ibarz A, Falguera V, Benítez R. Enzymatic hydrolysis kinetics and nitrogen recovery in the protein hydrolysate production from pig bones. Journal of Food Engineering. 2013 Dec 1; 119(3):655–9. https://www.sciencedirect.com/science/article/pii/S0260877413003415
  8. Jayathilakan K, Sultana K, Radhakrishna K, Bawa AS. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. J Food Sci Technol. 2012 Jun; 49(3):278–93. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614052/
  9. Naveed M, Nadeem F, Mehmood T, Bilal M, Anwar Z, Amjad F. Protease—A Versatile and Ecofriendly Biocatalyst with Multi-Industrial Applications: An Updated Review. Catal Lett. 2021; 151(2):307–23. https://link.springer.com/10.1007/s10562-020-03316-7
  10. Zhang Y, Olsen K, Grossi A, Otte J. Effect of pretreatment on enzymatic hydrolysis of bovine collagen and formation of ACE-inhibitory peptides. Food Chem. 2013 Dec 1;141(3):2343-54. doi: 10.1016/j.foodchem.2013.05.058. Epub 2013 May 24. PMID: 23870967.
  11. Damgaard T, Lametsch R, Otte J. Antioxidant capacity of hydrolyzed animal by-products and relation to amino acid composition and peptide size distribution. J Food Sci Technol. 2015 Oct;52(10):6511-9. doi: 10.1007/s13197-015-1745-z. Epub 2015 Feb 5. PMID: 26396396; PMCID: PMC4573118.
  12. Gómez-Guillén MC, Giménez B, López-Caballero ME, Montero MP. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011; 25(8):1813-1827. DOI: 10.1016/j.foodhyd.2011.02.007.
  13. Gutterres M, daSilva IV. Leather retanning with hydrolyzed protein. Journal of the American Leather Chemists Association. 2010 Jun 1; 105(06):195–202. https://journals.uc.edu/index.php/JALCA/article/view/3267
  14. Langmaier F, Mokrejs P, Kolomaznik K, Mladek M. Biodegradable packing materials from hydrolysates of collagen waste proteins. Waste Manag. 2008;28(3):549-56. doi: 10.1016/j.wasman.2007.02.003. Epub 2007 Mar 21. PMID: 17376664.
  15. Akter N, Fatema K, Azad AK, Chakma S. Acid hydrolysis of untanned proteinous wastes from tannery industry in Bangladesh. J Sci Innov Res. 2020 Sep 30; 9(3):83–6. http://www.jsirjournal.com/Vol9_Issue3_01.pdf
  16. Morimura S, Nagata H, Uemura Y, Fahmi A, Shigematsu T, Kida K. Development of an effective process for utilization of collagen from livestock and fish waste. Process Biochemistry. 2002 Jul 1; 37(12):1403–12. https://www.sciencedirect.com/science/article/pii/S0032959202000249
  17. Sathish M, Madhan B, Raghava Rao J. Leather solid waste: An eco-benign raw material for leather chemical preparation - A circular economy example. Waste Manag. 2019 Mar 15;87:357-367. doi: 10.1016/j.wasman.2019.02.026. Epub 2019 Feb 15. PMID: 31109536.
  18. Ammasi R, Victor JS, Chellan R, Chellappa M. Amino Acid Enriched Proteinous Wastes: Recovery and Reuse in Leather Making. Waste Biomass Valor. 2020 Nov 1; 11(11):5793–807. https://doi.org/10.1007/s12649-019-00912-6
  19. Damrongsakkul S, Ratanathammapan K, Komolpis K, Tanthapanichakoon W. Enzymatic hydrolysis of rawhide using papain and neutrase. Journal of Industrial and Engineering Chemistry. 2008 Mar 1; 14(2):202–6. https://www.sciencedirect.com/science/article/pii/S1226086X07000299
  20. Hervas F, Celma P, Punti I, Manich A, Cot J, Marsal A, et al. The Enzyme Activity of Trypsen on Sheepskin Trimmings in a Two-Step Collagen Extraction Process. Journal of The American Leather Chemists Association. 2007; https://www.semanticscholar.org/paper/The-Enzyme-Activity-of-Trypsen-on-Sheepskin-in-a-Hervas-Celma/2e7430d448f9213dff47648d2cadf1f4281075d4
  21. Kanagaraj J, Senthilvelan T, Panda RC, Kavitha S. Eco-friendly waste management strategies for greener environment towards sustainable development in leather industry: a comprehensive review. Journal of Cleaner Production. 2015 Feb 15; 89:1–17. https://www.sciencedirect.com/science/article/pii/S0959652614011858
  22. Kumaraguru S, Sastry T, Rose C. Hydrolysis of Tannery Fleshings Using Pancreatic Enzymes: A Biotechnological Tool for Solid Waste Management. Journal of The American Leather Chemists Association. 1998; https://www.semanticscholar.org/paper/Hydrolysis-of-Tannery-Fleshings-Using-Pancreatic-A-Kumaraguru-Sastry/09a0dc35a756c8c2efdf77d6a6d9ddfc73309f89
  23. Masilamani D, Madhan B, Shanmugam G, Palanivel S, Narayan B. Extraction of collagen from raw trimming wastes of tannery: a waste to wealth approach. Journal of Cleaner Production. 2016 Feb 1; 113:338–44. https://www.sciencedirect.com/science/article/pii/S0959652615018053
  24. Puhazhselvan P, Pandi A, Sujiritha PB, Antony GS, Jaisankar SN, Ayyadurai N, et al. Recycling of tannery fleshing waste by a two step process for preparation of retanning agent. Process Safety and Environmental Protection. 2022 Jan 1; 157:59–67. https://www.sciencedirect.com/science/article/pii/S0957582021005991
  25. Selvaraj S, Jeevan V, Rao Jonnalagadda R, Nishad Fathima N. Conversion of tannery solid waste to sound absorbing nanofibrous materials: A road to sustainability. Journal of Cleaner Production. 2019 Mar 10; 213:375–83. https://www.sciencedirect.com/science/article/pii/S095965261833854X
  26. Sundar JV, Gnanamani A, Muralidharan C, Chandrababu NK, Mandal AB. Recovery and utilization of proteinous wastes of leather making: a review. Rev Environ Sci Biotechnol. 2011 Jun 1; 10(2):151–63. https://doi.org/10.1007/s11157-010-9223-6
  27. Álvarez C, Lélu P, Lynch SA, Tiwari BK. Optimised protein recovery from mackerel whole fish by using sequential acid/alkaline isoelectric solubilization precipitation (ISP) extraction assisted by ultrasound. LWT. 2017; 88:210–216. https://doi.org/10.1016/j.lwt.2017.09.045
  28. Ansari AJ, Hai FI, Price WE, Drewes JE, Nghiem LD. Forward osmosis as a platform for resource recovery from municipal wastewater - A critical assessment of the literature. Journal of Membrane Science. 2017; 529:195–206. https://doi.org/10.1016/j.memsci.2017.01.054
  29. Khiari Z, Pietrasik Z, Gaudette NJ, Betti M. Poultry protein isolate prepared using an acid solubilization/precipitation extraction influences the microstructure, the functionality and the consumer acceptability of a processed meat product. Food Structure. 2014; 2:49–60. https://doi.org/10.1016/j.foostr.2014.08.002
  30. Lo YM, Cao D, Argin-Soysal S, Wang J, Hahm TS. Recovery of protein from poultry processing wastewater using membrane ultrafiltration. Bioresour Technol. 2005 Apr;96(6):687-98. doi: 10.1016/j.biortech.2004.06.026. PMID: 15588771.
  31. Matak KE, Tahergorabi R, Jaczynski J. A review: Protein isolates recovered by isoelectric solubilization/precipitation processing from muscle food by-products as a component of nutraceutical foods. Food Research International, Innovative food processing technologies: chemical, nutritional and microbiological aspects. 2017; 77:697–703. https://doi.org/10.1016/j.foodres.2015.05.048
  32. Melchiors MS, Piovesan M, Becegato VR, Becegato VA, Tambourgi EB, Paulino AT. Treatment of wastewater from the dairy industry using electroflocculation and solid whey recovery. Journal of Environmental Management. 2016; 182:574–580. https://doi.org/10.1016/j.jenvman.2016.08.022
  33. Galanakis CM. Food Waste Recovery: Processing Technologies, Industrial Techniques, and Applications. Academic Press. 2015 https://doi.org/10.1016/C2013-0-16046-1
  34. Ganju S, Gogate PR. A review on approaches for efficient recovery of whey proteins from dairy industry effluents. Journal of Food Engineering. 2017; 215:84–96. https://doi.org/10.1016/j.jfoodeng.2017.07.021
  35. Pérez-Aguilar H, Lacruz-Asaro M, Arán-Ais F. Towards a circular bioeconomy: High added value protein recovery and recycling from animal processing by-products. Sustainable Chemistry and Pharmacy. 2022; 28:100667. https://linkinghub.elsevier.com/retrieve/pii/S2352554122000717
  36. Colla G, Hoagland L, Ruzzi M, Cardarelli M, Bonini P, Canaguier R, Rouphael Y. Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. Front Plant Sci. 2017 Dec 22;8:2202. doi: 10.3389/fpls.2017.02202. PMID: 29312427; PMCID: PMC5744479.
  37. Pérez-Aguilar H, Lacruz-Asaro M, Ruzafa-Silvestre C, Arán-Ais F. Protein recovery from wastewater animal processing by-products of rendering plants for biostimulant applications in agriculture. Sustainable Chemistry and Pharmacy. 2023; 32:101009. https://linkinghub.elsevier.com/retrieve/pii/S2352554123000438
  38. Martín MHJ, Ángel MMM, Aarón SLJ, Israel BG. Protein Hydrolysates as Biostimulants of Plant Growth and Development. In: Ramawat N, Bhardwaj V, editors. Biostimulants: Exploring Sources and Applications. Singapore: Springer Nature Singapore. 2022;141–75. https://link.springer.com/10.1007/978-981-16-7080-0_6
  39. Pituello C, Ambrosini S, Varanini Z, Pandolfini T, Zamboni A, Povolo C, et al. Animal-Derived Hydrolyzed Protein and Its Biostimulant Effects. In: Ramawat N, Bhardwaj V, editors. Biostimulants: Exploring Sources and Applications. Singapore: Springer Nature Singapore; 2022. p. 107–40. https://link.springer.com/10.1007/978-981-16-7080-0_5
  40. Povolo C, Avolio R, Doria E, Marra A, Neresini M. Development and validation of an analytical method to ensure quality requirements of hydrolysed proteins intended for agricultural use as biostimulants. Talanta Open. 2022 Aug 1; 5:100082. https://www.sciencedirect.com/science/article/pii/S2666831922000017

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?