Abstract

Mini Review

Bio Avengers: How do Endophytic Microorganisms Alter a Plant's Defense Mechanisms?

Priyanka Chauhan, Pratibha Verma and Aradhana Mishra*

Published: 20 February, 2024 | Volume 8 - Issue 1 | Pages: 001-006

Endophytic microbes i.e. bacteria, fungi, and actinomycetes live inside the plant tissues without causing any harmful effect on them. Recently, research has been conducted on endophytic microbes to enhance agriculture and environmental sustainability. Endophytes stabilize a close association with their host, which leads to major changes in plant physiology. Endophytic microbes and pathogens use the same strategies for entering the host cell. This condition may create competition between the endophytes and the pathogen. Therefore, host plants develop strategies to allow the entry of specific microorganisms. Additionally, endophytic microorganisms may temper their own genetic structure to survive and avoid the host defence machinery. The plant-endophyte symbionts promote direct and indirect defences to host plants. This plays an essential role in modulating plant defences against various stresses, particularly biotic stress. In this minireview, we highlight the interaction of endophytic microbes with their host.  As well as the role of endophytic microbes in the enhancement of plant defence systems.

Read Full Article HTML DOI: 10.29328/journal.jpsp.1001123 Cite this Article Read Full Article PDF

Keywords:

Endophytic microbes; Plant immune system; Pathogen; Symbiotic

References

  1. Yadav AN, Saxena AK. Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. Journal of Applied Biology and Biotechnology. 2018; 6(1): 48-55.
  2. Dutta D, Puzari KC, Gogoi R, Dutta P. Endophytes: exploitation as a tool in plant protection. Brazilian Archives of Biology and Technology. 2014; 57: 621-629.
  3. Singh P, Sharma A, Arivaradarajan P, Bordoloi M, Sarmah BK, Nandi SP. Behavioral dualism of endophytes in plant-microbe interaction and their diverse applications review. 2023.
  4. Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CMJ, Schenk PM. Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria. Front Microbiol. 2017 Dec 19; 8:2552. doi: 10.3389/fmicb.2017.02552. PMID: 29312235; PMCID: PMC5742157.
  5. Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013; 64:807-38. doi: 10.1146/annurev-arplant-050312-120106. Epub 2013 Jan 30. PMID: 23373698.
  6. Remus-Emsermann MN, Lücker S, Müller DB, Potthoff E, Daims H, Vorholt JA. Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environ Microbiol. 2014 Jul;16(7):2329-40. doi: 10.1111/1462-2920.12482. Epub 2014 May 12. PMID: 24725362.
  7. Lighthart B. Mini-review of the concentration variations found in the alfresco atmospheric bacterial populations. Aerobiologia. 2000; 16: 7-16.
  8. Hardoim PR, van Overbeek LS, Elsas JD. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 2008 Oct;16(10):463-71. doi: 10.1016/j.tim.2008.07.008. Epub 2008 Sep 12. PMID: 18789693.
  9. Majdura J, Jankiewicz U, Gałązka A, Orzechowski S. The Role of Quorum Sensing Molecules in Bacterial-Plant Interactions. Metabolites. 2023 Jan 10;13(1):114. doi: 10.3390/metabo13010114. PMID: 36677039; PMCID: PMC9863971.
  10. Hartmann A, Klink S, Rothballer M. Importance of N-Acyl-Homoserine Lactone-Based Quorum Sensing and Quorum Quenching in Pathogen Control and Plant Growth Promotion. Pathogens. 2021 Nov 30;10(12):1561. doi: 10.3390/pathogens10121561. PMID: 34959516; PMCID: PMC8706166.
  11. Sharma S, Gandhi SG. Quorum Sensing and its Role in Bacterial Pathogenicity. In Plant Pathogen Interaction. 2024; 221-233. Singapore: Springer Nature Singapore.
  12. Dubey A, Malla MA, Kumar A, Dayanandan S, Khan ML. Plants endophytes: unveiling hidden agenda for bioprospecting toward sustainable agriculture. Crit Rev Biotechnol. 2020 Dec;40(8):1210-1231. doi: 10.1080/07388551.2020.1808584. Epub 2020 Aug 30. PMID: 32862700.
  13. Kost T, Stopnisek N, Agnoli K, Eberl L, Weisskopf L. Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans. Front Microbiol. 2014 Jan 9;4:421. doi: 10.3389/fmicb.2013.00421. PMID: 24409174; PMCID: PMC3886118.
  14. Deng Y, Chen H, Li C, Xu J, Qi Q, Xu Y, Zhu Y, Zheng J, Peng D, Ruan L, Sun M. Endophyte Bacillus subtilisevade plant defense by producing lantibiotic subtilomycin to mask self-produced flagellin. Commun Biol. 2019 Oct 10;2:368. doi: 10.1038/s42003-019-0614-0. PMID: 31633059; PMCID: PMC6787100.
  15. Timm CM, Campbell AG, Utturkar SM, Jun SR, Parales RE, Tan WA, Robeson MS, Lu TY, Jawdy S, Brown SD, Ussery DW, Schadt CW, Tuskan GA, Doktycz MJ, Weston DJ, Pelletier DA. Metabolic functions of Pseudomonas fluorescens strains from Populus deltoides depend on rhizosphere or endosphere isolation compartment. Front Microbiol. 2015 Oct 14;6:1118. doi: 10.3389/fmicb.2015.01118. PMID: 26528266; PMCID: PMC4604316.
  16. Kusajima M, Shima S, Fujita M, Minamisawa K, Che FS, Yamakawa H, Nakashita H. Involvement of ethylene signaling in Azospirillum sp. B510-induced disease resistance in rice. Biosci Biotechnol Biochem. 2018 Sep;82(9):1522-1526. doi: 10.1080/09168451.2018.1480350. Epub 2018 May 30. PMID: 29847205.
  17. Formey D, Sallet E, Lelandais-Brière C, Ben C, Bustos-Sanmamed P, Niebel A, Frugier F, Combier JP, Debellé F, Hartmann C, Poulain J, Gavory F, Wincker P, Roux C, Gentzbittel L, Gouzy J, Crespi M. The small RNA diversity from Medicago truncatula roots under biotic interactions evidences the environmental plasticity of the miRNAome. Genome Biol. 2014 Sep 24;15(9):457. doi: 10.1186/s13059-014-0457-4. PMID: 25248950; PMCID: PMC4212123.
  18. Singh S, Assumi R, Bhadrecha P. Crosstalk of MicroRNAs with Phytohormone Signalling Pathways. Plant MicroRNAs and Stress Response. 2023; 257-276.
  19. Samanta A, Banerjee S, Datta S. The role of endophytes to boost the plant immunity. In Endophytic Association: What, Wh. 2023.
  20. Yun J, Wang C, Zhang F, Chen L, Sun Z, Cai Y, Luo Y, Liao J, Wang Y, Cha Y, Zhang X, Ren Y, Wu J, Hasegawa PM, Tian C, Su H, Ferguson BJ, Gresshoff PM, Hou W, Han T, Li X. A nitrogen fixing symbiosis-specific pathway required for legume flowering. Sci Adv. 2023 Jan 13;9(2):eade1150. doi: 10.1126/sciadv.ade1150. Epub 2023 Jan 13. PMID: 36638166; PMCID: PMC9839322.
  21. Yadav R, Ramakrishna W. MicroRNAs Involved in Nutritional Regulation During Plant-Microbe Symbiotic and Pathogenic Interactions with Rice as a Model. Mol Biotechnol. 2023 Jul 19. doi: 10.1007/s12033-023-00822-y. Epub ahead of print. PMID: 37468736.
  22. Kumar V, Raghuvanshi N, Kumar A, Rithesh L, Rai A, Pandey AK. Deciphering phytomicrobiomes for sustainable crop production: recent findings and future perspectives. Plant Stress. 2023; 100285.
  23. Kumar V, Nautiyal CS. Endophytes Modulate Plant Genes: Present Status and Future Perspectives. Curr Microbiol. 2023 Sep 22;80(11):353. doi: 10.1007/s00284-023-03466-y. PMID: 37740026.
  24. Plett JM, Martin FM. Know your enemy, embrace your friend: using omics to understand how plants respond differently to pathogenic and mutualistic microorganisms. Plant J. 2018 Feb;93(4):729-746. doi: 10.1111/tpj.13802. Epub 2018 Jan 18. PMID: 29265527.
  25. Coutinho BG, Licastro D, Mendonça-Previato L, Cámara M, Venturi V. Plant-Influenced Gene Expression in the Rice Endophyte Burkholderia kururiensis M130. Mol Plant Microbe Interact. 2015 Jan;28(1):10-21. doi: 10.1094/MPMI-07-14-0225-R. PMID: 25494355.
  26. Alquéres S, Meneses C, Rouws L, Rothballer M, Baldani I, Schmid M, Hartmann A. The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5. Mol Plant Microbe Interact. 2013 Aug;26(8):937-45. doi: 10.1094/MPMI-12-12-0286-R. PMID: 23634840.
  27. Teixeira PJP, Colaianni NR, Fitzpatrick CR, Dangl JL. Beyond pathogens: microbiota interactions with the plant immune system. Curr Opin Microbiol. 2019 Jun;49:7-17. doi: 10.1016/j.mib.2019.08.003. Epub 2019 Sep 26. PMID: 31563068.
  28. Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D, Teixeira PJPL, Dangl JL. The Plant Microbiome: From Ecology to Reductionism and Beyond. Annu Rev Microbiol. 2020 Sep 8;74:81-100. doi: 10.1146/annurev-micro-022620-014327. Epub 2020 Jun 12. PMID: 32530732.
  29. Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda Mdel C, Glick BR. Plant growth-promoting bacterial endophytes. Microbiol Res. 2016 Feb;183:92-9. doi: 10.1016/j.micres.2015.11.008. Epub 2015 Nov 25. PMID: 26805622.
  30. Khare E, Mishra J, Arora NK. Multifaceted Interactions Between Endophytes and Plant: Developments and Prospects. Front Microbiol. 2018 Nov 15;9:2732. doi: 10.3389/fmicb.2018.02732. PMID: 30498482; PMCID: PMC6249440.
  31. Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55:165-99. doi: 10.1146/annurev.micro.55.1.165. PMID: 11544353.
  32. De Kesel J, Conrath U, Flors V, Luna E, Mageroy MH, Mauch-Mani B, Pastor V, Pozo MJ, Pieterse CMJ, Ton J, Kyndt T. The Induced Resistance Lexicon: Do's and Don'ts. Trends Plant Sci. 2021 Jul;26(7):685-691. doi: 10.1016/j.tplants.2021.01.001. Epub 2021 Jan 30. PMID: 33531282.
  33. Pieterse CM, van Wees SC, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon LC. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell. 1998 Sep;10(9):1571-80. doi: 10.1105/tpc.10.9.1571. PMID: 9724702; PMCID: PMC144073.
  34. Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Metraux JP, Ryals JA. Coordinate Gene Activity in Response to Agents That Induce Systemic Acquired Resistance. Plant Cell. 1991 Oct;3(10):1085-1094. doi: 10.1105/tpc.3.10.1085. PMID: 12324583; PMCID: PMC160074.
  35. Van Loon LC, Van Strien EA. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and molecular plant pathology. 1999; 55(2): 85-97.
  36. Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo JH. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Mol Plant Microbe Interact. 2011 May;24(5):533-42. doi: 10.1094/MPMI-09-10-0213. PMID: 21198361.
  37. Maurhofer M, Hase C, Meuwly P, Metraux JP, Defago G. Induction of systemic resistance of tobacco-to-tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: influence of the gacA gene and of pyoverdine production. Phytopathology (USA). 1994; 84(2).
  38. Martínez-Hidalgo P, García JM, Pozo MJ. Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules. Front Microbiol. 2015 Sep 2;6:922. doi: 10.3389/fmicb.2015.00922. PMID: 26388861; PMCID: PMC4556977.
  39. Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robison R, Condron MAM, Teplow DB, Stevens D, Yaver D. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology (Reading). 2002 Sep;148(Pt 9):2675-2685. doi: 10.1099/00221287-148-9-2675. PMID: 12213914.
  40. Mohamad OAA, Li L, Ma JB, Hatab S, Xu L, Guo JW, Rasulov BA, Liu YH, Hedlund BP, Li WJ. Evaluation of the Antimicrobial Activity of Endophytic Bacterial Populations From Chinese Traditional Medicinal Plant Licorice and Characterization of the Bioactive Secondary Metabolites Produced by Bacillus atrophaeusAgainst Verticillium dahliae. Front Microbiol. 2018 May 9;9:924. doi: 10.3389/fmicb.2018.00924. PMID: 29867835; PMCID: PMC5954123.
  41. Mends MT, Yu E, Strobel GA, Hassan S.R.U., Booth, E., Geary, B., Sears, J., Taatjes, C.A. and Hadi, M., 2012. An endophytic Nodulisporium sp. producing volatile organic compounds having bioactivity and fuel potential. Journal of Petroleum & Environmental Biotechnology, 3(3).
  42. Ren JH, Li H, Wang YF, Ye JR, Yan AQ, Wu XQ. Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against poplar canker. Biological Control. 2013; 67(3): 421-430.
  43. D'Alessandro M, Erb M, Ton J, Brandenburg A, Karlen D, Zopfi J, Turlings TCJ. Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ. 2014 Apr;37(4):813-826. doi: 10.1111/pce.12220. Epub 2013 Dec 1. PMID: 24127750; PMCID: PMC4194311.
  44. Gao Z, Zhang B, Liu H, Han J, Zhang Y. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biological Control. 2017; 105: 27-39.
  45. Xie S, Liu J, Gu S, Chen X, Jiang H, Ding T. Antifungal activity of volatile compounds produced by endophytic Bacillus subtilis DZSY21 against Curvularia lunata. Annals of Microbiology. 2020; 70(1): 1-10.
  46. Hawar SN, Taha ZK, Hamied AS, Al-Shmgani HS, Sulaiman GM, Elsilk SE. Antifungal Activity of Bioactive Compounds Produced by the Endophytic Fungus Paecilomyces sp. (JN227071.1) against Rhizoctonia solani. Int J Biomater. 2023 Apr 20;2023:2411555. doi: 10.1155/2023/2411555. PMID: 37122583; PMCID: PMC10139814.
  47. Ali SAB, Abdelmoaty H, Ramadan H, Salman Y. The Endophytic Fungus Epicoccum Nigrum: Isolation, Molecular Identification And Study Its Antifungal Activity Against Phytopathogenic Fungus Fusarium Solani. Journal of microbiology, biotechnology, and food sciences. 2024; e10093-e10093.
  48. Castillo U, Harper JK, Strobel GA, Sears J, Alesi K, Ford E, Lin J, Hunter M, Maranta M, Ge H, Yaver D, Jensen JB, Porter H, Robison R, Millar D, Hess WM, Condron M, Teplow D. Kakadumycins, novel antibiotics from Streptomyces sp NRRL 30566, an endophyte of Grevillea pteridifolia. FEMS Microbiol Lett. 2003 Jul 29;224(2):183-90. doi: 10.1016/S0378-1097(03)00426-9. PMID: 12892881.
  49. Fiedler HP, Bruntner C, Riedlinger J, Bull AT, Knutsen G, Goodfellow M, Jones A, Maldonado L, Pathom-aree W, Beil W, Schneider K, Keller S, Sussmuth RD. Proximicin A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosispora. J Antibiot (Tokyo). 2008 Mar;61(3):158-63. doi: 10.1038/ja.2008.125. PMID: 18503194.
  50. Ding L, Maier A, Fiebig HH, Lin WH, Hertweck C. A family of multicyclic indolosesquiterpenes from a bacterial endophyte. Org Biomol Chem. 2011 Jun 7;9(11):4029-31. doi: 10.1039/c1ob05283g. Epub 2011 Apr 28. PMID: 21528153.
  51. Bae M, Chung B, Oh KB, Shin J, Oh DC. Hormaomycins B and C: New Antibiotic Cyclic Depsipeptides from a Marine Mudflat-Derived Streptomyces sp. Mar Drugs. 2015 Aug 14;13(8):5187-200. doi: 10.3390/md13085187. PMID: 26287218; PMCID: PMC4557019.
  52. El-Deeb B, Fayez K, Gherbawy Y. Isolation and characterization of endophytic bacteria from Plectranthus tenuiflorus medicinal plant in Saudi Arabia desert and their antimicrobial activities. Journal of plant interactions. 2013; 8(1): 56-64.
  53. Elfita E, Larasati JE, Widjajanti H. Antibacterial activity of Cordyline fruticosa leaf extracts and its endophytic fungi extracts. Biodiversitas Journal of Biological Diversity. 2019; 20(12).
  54. Numan M, Shah M, Asaf S, Ur Rehman N, Al-Harrasi A. Bioactive Compounds from Endophytic Bacteria Bacillus subtilisStrain EP1 with Their Antibacterial Activities. Metabolites. 2022 Dec 7;12(12):1228. doi: 10.3390/metabo12121228. PMID: 36557265; PMCID: PMC9788538.
  55. Hashem AH, Al-Askar AA, Abd Elgawad H, Abdelaziz AM. Bacterial endophytes from Moringa oleifera leaves as a promising source for bioactive compounds. Separations. 2023; 10(7): 395.
  56. Hense BA, Schuster M. Core principles of bacterial autoinducer systems. Microbiol Mol Biol Rev. 2015 Mar;79(1):153-69. doi: 10.1128/MMBR.00024-14. PMID: 25694124; PMCID: PMC4402962.
  57. Li Y, Zhang Q, Zhang J, Wu L, Qi Y, Zhou JM. Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol. 2010 Apr;152(4):2222-31. doi: 10.1104/pp.109.151803. Epub 2010 Feb 17. PMID: 20164210; PMCID: PMC2850012.
  58. Miller CM, Miller RV, Garton-Kenny D, Redgrave B, Sears J, Condron MM, Teplow DB, Strobel GA. Ecomycins, unique antimycotics from Pseudomonas viridiflava. J Appl Microbiol. 1998 Jun;84(6):937-44. doi: 10.1046/j.1365-2672.1998.00415.x. PMID: 9717277.
  59. Wang Y, Wang L, Zou Y, Chen L, Cai Z, Zhang S, Zhao F, Tian Y, Jiang Q, Ferguson BJ, Gresshoff PM, Li X. Soybean miR172c targets the repressive AP2 transcription factor NNC1 to activate ENOD40 expression and regulate nodule initiation. Plant Cell. 2014 Dec;26(12):4782-801. doi: 10.1105/tpc.114.131607. Epub 2014 Dec 30. PMID: 25549672; PMCID: PMC4311200.
  60. Wu P, Wu Y, Liu CC, Liu LW, Ma FF, Wu XY, Wu M, Hang YY, Chen JQ, Shao ZQ, Wang B. Identification of Arbuscular Mycorrhiza (AM)-Responsive microRNAs in Tomato. Front Plant Sci. 2016 Mar 31;7:429. doi: 10.3389/fpls.2016.00429. PMID: 27066061; PMCID: PMC4814767.

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?