Abstract

Research Article

Comparison of RGB Indices used for Vegetation Studies based on Structured Similarity Index (SSIM)

Lóránt Biró*, Veronika Kozma-Bognár and József Berke

Published: 27 February, 2024 | Volume 8 - Issue 1 | Pages: 007-012

Remote sensing methods are receiving more and more attention during vegetation studies, thanks to the rapid development of drones. The use of indices created using different bands of the electromagnetic spectrum is currently a common practice in agriculture e.g. normalized vegetation index (NDVI), for which, in addition to the red (R), green (G) and blue (B) bands, in different infrared (IR) ranges used bands are used. In addition, there are many indices in the literature that can only be calculated from the red, green, blue (RGB) bands and are used for different purposes. The aim of our work was to objectively compare and group the RGB indices found in the literature (37 pcs) using an objective mathematical method (structured similarity index; SSIM), as a result of which we classified the individual RGB indices into groups that give the same result. To do this, we calculated the 37 RGB indexes on a test image, and then compared the resulting images in pairs using the structural similarity index method. As a result, 28 of the 37 indexes examined could be narrowed down to 7 groups - that is, the indexes belonging to the groups are the same - while the remaining 9 indexes showed no similarity with any other index.

Read Full Article HTML DOI: 10.29328/journal.jpsp.1001124 Cite this Article Read Full Article PDF

Keywords:

Remote sensing; Unmanned aerial vehicle (UAV); Index; Structured similarity index (SSIM)

References

  1. Shannon CEA. A mathematical theory of communication. The Bell System Technical Journal. 1948; 27: 379-423; 623-656.
  2. Rényi A. On measures of entropy and information. Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics, and Probability. 1961; 4:1; 547-561.
  3. Kozma-Bognár V, Berke J. New Applied Techniques in Evaluation of Hyperspectral Data. Georgikon for Agriculture. 2009; 12: 25-48.
  4. Kozma-Bognar V, Berke J. New Evaluation Techniques of Hyperspectral Data. J. of Systemics, Cybernetics and Informatics. 2010; 8: 49-53.
  5. Berke J. Measuring of spectral fractal dimension. New Math. Nat. Comput. 2007; 3: 409-418, doi: https://doi.org/10.1142/S1793005707000872 .
  6. Berke J, Gulyás I, Bognár Z, Berke D, Enyedi A, Kozma-Bognár V, Mauchart P, Nagy B, Várnagy Á, Kovács K, Bódis J. Unique algorithm for the evaluation of embryo photon emission and viability, preprint. 2024.
  7. Berke J. Using spectral fractal dimension in image classification. In: Sobh, T. (ed.), Innovations and Advances in Computer Sciences and Engineering. 2010; 237-242. Springer Dordrecht. https://doi.org/10.1007/978-90-481-3658-2.
  8. Karydas CG. Unified scale theorem: a mathematical formulation of scale in the frame of Earth observation image classification. Fractal Fract. 2021; 5: 127. https://doi.org/10.3390/fractalfract5030127.
  9. Rosenberg E. Fractal Dimensions of Networks. Springer Nature Switzerland AG. 2020.
  10. Dachraoui C, Mouelhi A, Drissi C, Labidi S. Chaos theory for prognostic purposes in multiple sclerosis. Transactions of the Institute of Measurement and Control. 2021; 11. https://doi.org/10.1177/01423312211040309.
  11. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004 Apr;13(4):600-12. doi: 10.1109/tip.2003.819861. PMID: 15376593.
  12. van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E, Yu T; scikit-image contributors. scikit-image: image processing in Python. PeerJ. 2014 Jun 19;2:e453. doi: 10.7717/peerj.453. PMID: 25024921; PMCID: PMC4081273.
  13. Costa L, de Morais NL, Ampatzidis Y. A new visible band index (vNDVI) for estimating NDVI values on RGB images utilizing genetic algorithms. Computers and Electronics in Agriculture. 2020; 172. https://doi.org/105334. 10.1016/j.compag.2020.105334.
  14. Feng H, Tao H, Li Z, Yang G, Zhao C. Comparison of UAV RGB Imagery and Hyperspectral Remote-Sensing Data for Monitoring Winter Wheat Growth. Remote Sensing. 2022; 14: 3811. https://doi.org/10.3390/rs14153811 .
  15. Fuentes-Peñailillo F, Ortega-Farias S, Rivera M, Bardeen M, Moreno M. Comparison of vegetation indices acquired from RGB and Multispectral sensors placed on UAV. ICA-ACCA 2018, October 17-19, 2018, Greater Concepci´on, Chile. 2019.
  16. Furukawa F, Laneng LA, Ando H, Yoshimura N, Kaneko M, Morimoto J. Comparison of RGB and Multispectral Unmanned Aerial Vehicle for Monitoring Vegetation Coverage Changes on a Landslide Area. Drones. 2021; 5: 97. https://doi.org/10.3390/drones5030097.
  17. Gracia-Romero A, Kefauver SC, Vergara-Díaz O, Zaman-Allah MA, Prasanna BM, Cairns JE, Araus JL. Comparative Performance of Ground vs. Aerially Assessed RGB and Multispectral Indices for Early-Growth Evaluation of Maize Performance under Phosphorus Fertilization. Front Plant Sci. 2017 Nov 27;8:2004. doi: 10.3389/fpls.2017.02004. PMID: 29230230; PMCID: PMC5711853.
  18. Yuan Y, Wang X, Shi M, Wang P. Performance comparison of RGB and multispectral vegetation indices based on machine learning for estimating Hopea hainanensisSPAD values under different shade conditions. Front Plant Sci. 2022 Jul 22;13:928953. doi: 10.3389/fpls.2022.928953. PMID: 35937316; PMCID: PMC9355326.
  19. De Swaef T, Maes WH, Aper J, Baert J, Cougnon M, Reheul D, Steppe K, Roldán-Ruiz I, Lootens P. Applying RGB- and Thermal-Based Vegetation Indices from UAVs for High-Throughput Field Phenotyping of Drought Tolerance in Forage Grasses. Remote Sensing. 2021; 13(1): 147. https://doi.org/10.3390/rs13010147 .
  20. Zarco-Tejada PJ, Berjón A, López-Lozano R, Miller JR, Martín P, Cachorro V, González MR, de Frutos A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment. 2005; 99(3): 271-287. https://doi.org/10.1016/j.rse.2005.09.002.
  21. Richardson AJ, Wiegand C. Distinguishing Vegetation from Soil Background Information. Photogrammetric Engineering and Remote Sensing. 1977; 43: 1541-1552.
  22. Kataoka T, Kaneko T, Okamoto H, Hata S. Crop growth estimation system using machine vision. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2003, Kobe. Proceedings. Piscataway: IEEE. 2003; 2:1; 1079-1083.
  23. Mao W, Wang Y, Wang Y. Real-time detection of between row weeds using machine vision. ASABE Annual Meeting. Las Vegas, NV. 2003.
  24. Woebbecke DM, Meyer GE, Bargen KVON, Mortensen DA. Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the ASAE, Michigan. 1995; 38: 1; 259-269.
  25. Meyer GE, Camargo Neto J. Verification of color vegetation indices for automated crop imaging applications. Computers and Electronics in Agriculture. Athens. 2008; 63: 2; 282-293.
  26. Richardson AD, Jenkins JP, Braswell BH, Hollinger DY, Ollinger SV, Smith ML. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia. 2007 May;152(2):323-34. doi: 10.1007/s00442-006-0657-z. Epub 2007 Mar 7. PMID: 17342508.
  27. Louhaichi M, Borman MM, Johnson DE. Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto International. 2001; 16:1; 65-70. DOI: 10.1080/10106040108542184.
  28. Gamon JA, Surfus JS. Assessing leaf pigment content and activity with a reflectometer. New Phytologist. 1999; 143:105-117. https://doi.org/10.1046/j.1469-8137.1999.00424.x.
  29. Motohka T, Nasahara KN, Oguma H, Tsuchida S. Applicability of green-red vegetation index for remote sensing of vegetation phenology. Remote Sensing, Amsterdam. 2010; 2: 10; 2369-2387.
  30. Escadafal R, Belghit A, Ben-Moussa A. Indices spectraux pour la télédétection de la dégradation des milieux naturels en Tunisie aride. In: Guyot, G. réd., Actes du 6eme Symposium international sur les mesures physiques et signatures en télédétection, Val d’Isère (France), 17-24 Janvier. 1994; 253-259.
  31. Kawashima S, Nakatani M. An Algorithm for Estimating Chlorophyll Content in Leaves Using a Video Camera. Annals of Botany. 1998; 81(1):49-54. https://doi.org/10.1006/anbo.1997.0544 .
  32. Segal D. Theoretical Basis for Differentiation of Ferric-Iron Bearing Minerals, Using Landsat MSS Data. Proceedings of Symposium for Remote Sensing of Environment, 2nd Thematic Conference on Remote Sensing for Exploratory Geology. Fort Worth, TX. 1982; 949-951.
  33. Saberioon MM, Amin MSM, Anuar AR, Gholizadeh A, Wayayok A, Khairunniza-Bejo S. Assessment of rice leaf chlorophyll content using visible bands at different growth stages at both the leaf and canopy scale. International Journal of Applied Earth Observation and Geoinformation, Amsterdam. 2014; 32: 35-45.
  34. Bendig J, Yu K, Aasen H, Bolten A, Bennertz S, Broscheit J, Gnyp ML, Bareth G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation. Amsterdam. 2015; 39: 79-87.
  35. Yang Z, Willis P, Mueller R. Impact of band-ratio enhanced AWIFS image to crop classification accuracy. Pecora. 2008; 17:18-20.
  36. McNairn H, Protz R. Mapping Corn Field Residue Cover on Agricultural Fields in Oxford County, Ontario, Using Thematic Ma. Canadian Journal of Remote Sensing. 2014; 19.
  37. Du M, Noguchi N. Monitoring of Wheat Growth Status and Mapping of Wheat Yield’s within-Field Spatial Variations Using Color Images Acquired from UAV-camera System. Remote Sensing. 2017; 9(3):289. https://doi.org/10.3390/rs9030289 .
  38. Gitelson A, Kaufman Y, Rundquist D. Novel Algorithms for Remote Estimation of Vegetation Fraction. Remote Sensing of Environment. 2002; 80: 76-87. https://doi.org/10.1016/S0034-4257(01)00289-9.
  39. Gamon JA, Serrano L, Surfus JS. The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia. 1997 Nov;112(4):492-501. doi: 10.1007/s004420050337. PMID: 28307626.
  40. Li Y, Chen D, Walker CN, Angus JF. Estimating the nitrogen status of crops using a digital camera. Field Crops Research, Amsterdam. 2010; 118:3; 221-227.
  41. Mathieu R, Pouget M. Relationships between satellite-based radiometric indices simulated using laboratory reflectance data and typic soil colour of an arid environment. Remote Sensing of Environment. 1998; 66:17-28.
  42. Hunt ER Jr., Doraiswamy PC, McMurtrey JE, Daughtry CST, Perry EM, Akhmedov B. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Publications from USDA-ARS / UNL Faculty. 2013; 1156.
  43. Wang X, Wang M, Wang S, Wu Y. Extraction of vegetation information from visible unmanned aerial vehicle images. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering. 2015; 31:5; 152-159.

Hague T, Tillett ND, Wheeler H. Automated crop and weed monitoring in widely spaced cereals. Precision Agriculture, Berlin. 2006; 7:1; 21-32.

Figures:

Similar Articles

Recently Viewed

  • Synthesis of Carbon Nano Fiber from Organic Waste and Activation of its Surface Area
    Himanshu Narayan*, Brijesh Gaud, Amrita Singh and Sandesh Jaybhaye Himanshu Narayan*,Brijesh Gaud,Amrita Singh,Sandesh Jaybhaye. Synthesis of Carbon Nano Fiber from Organic Waste and Activation of its Surface Area. Int J Phys Res Appl. 2019: doi: 10.29328/journal.ijpra.1001017; 2: 056-059
  • Obesity Surgery in Spain
    Aniceto Baltasar* Aniceto Baltasar*. Obesity Surgery in Spain. New Insights Obes Gene Beyond. 2020: doi: 10.29328/journal.niogb.1001013; 4: 013-021
  • Tamsulosin and Dementia in old age: Is there any relationship?
    Irami Araújo-Filho*, Rebecca Renata Lapenda do Monte, Karina de Andrade Vidal Costa and Amália Cinthia Meneses Rêgo Irami Araújo-Filho*,Rebecca Renata Lapenda do Monte,Karina de Andrade Vidal Costa,Amália Cinthia Meneses Rêgo. Tamsulosin and Dementia in old age: Is there any relationship?. J Neurosci Neurol Disord. 2019: doi: 10.29328/journal.jnnd.1001025; 3: 145-147
  • Case Report: Intussusception in an Infant with Respiratory Syncytial Virus (RSV) Infection and Post-Operative Wound Dehiscence
    Lamin Makalo*, Orlianys Ruiz Perez, Benjamin Martin, Cherno S Jallow, Momodou Lamin Jobarteh, Alagie Baldeh, Abdul Malik Fye, Fatoumatta Jitteh and Isatou Bah Lamin Makalo*,Orlianys Ruiz Perez,Benjamin Martin,Cherno S Jallow,Momodou Lamin Jobarteh,Alagie Baldeh,Abdul Malik Fye,Fatoumatta Jitteh,Isatou Bah. Case Report: Intussusception in an Infant with Respiratory Syncytial Virus (RSV) Infection and Post-Operative Wound Dehiscence. J Community Med Health Solut. 2025: doi: 10.29328/journal.jcmhs.1001051; 6: 001-004
  • The prevalence and risk factors of chronic kidney disease among type 2 diabetes mellitus follow-up patients at Debre Berhan Referral Hospital, Central Ethiopia
    Getaneh Baye Mulu, Worku Misganew Kebede, Fetene Nigussie Tarekegn, Abayneh Shewangzaw Engida, Migbaru Endawoke Tiruye, Mulat Mossie Menalu, Yalew Mossie, Wubshet Teshome and Bantalem Tilaye Atinafu* Getaneh Baye Mulu,Worku Misganew Kebede,Fetene Nigussie Tarekegn,Abayneh Shewangzaw Engida,Migbaru Endawoke Tiruye,Mulat Mossie Menalu,Yalew Mossie,Wubshet Teshome,Bantalem Tilaye Atinafu*. The prevalence and risk factors of chronic kidney disease among type 2 diabetes mellitus follow-up patients at Debre Berhan Referral Hospital, Central Ethiopia. J Clini Nephrol. 2023: doi: 10.29328/journal.jcn.1001104; 7: 025-031

Read More

Most Viewed

Read More

Help ?