Abstract

Research Article

Auxin-like and Cytokinin-like Effects of New Synthetic Pyrimidine Derivatives on the Growth and Photosynthesis of Wheat

Tsygankova Victoria Anatolyivna*, Andrusevich YaV, Vasylenko NM, Kopich VM, Popilnichenko SV, Pilyo SG and Brovarets VS

Published: 19 March, 2024 | Volume 8 - Issue 1 | Pages: 015-024

The regulatory effect of new synthetic thienopyrimidine derivatives on the growth and photosynthesis of wheat (Triticum aestivum L.) variety Svitlana in the vegetative phase was studied. The regulatory effect of new synthetic thienopyrimidine derivatives was compared with the regulatory effect of auxin IAA (1H-indol-3-yl)acetic acid) or synthetic plant growth regulators Methyur (sodium salt of 6-methyl-2-mercapto-4-hydroxypyrimidine) and Kamethur (potassium salt of 6-methyl-2-mercapto-4-hydroxypyrimidine). After 2 weeks, morphometric parameters (such as average length of shoots and roots (mm), average biomass of 10 plants (g)) and biochemical parameters (such as content of photosynthetic pigments (µg/ml)) of wheat plants grown from seeds treated with synthetic thienopyrimidine derivatives, or auxin IAA, or synthetic plant growth regulators Methyur and Kamethur at a concentration of 10-6M, were measured and compared with similar parameters of control wheat plants grown from seeds treated with distilled water. The regulatory effect of new synthetic thienopyrimidine derivatives on the morphometric and biochemical parameters of wheat plants was similar or higher compared to the regulatory effect of auxin IAA, or synthetic plant growth regulators Methyur and Kamethur. The relationship between the chemical structure of new synthetic thienopyrimidine derivatives and their regulatory effect on the growth and photosynthesis of wheat plants was revealed. The most biologically active thienopyrimidine derivatives are proposed to be used as new synthetic physiological analogues of auxins and cytokinins to improve growth and increase photosynthesis of wheat (Triticum aestivum L.)
variety Svitlana in the vegetative phase.

Read Full Article HTML DOI: 10.29328/journal.jpsp.1001126 Cite this Article Read Full Article PDF

Keywords:

Triticum aestivum L.; Auxin IAA; Plant growth regulators; Methyur; Kamethur; Pyrimidine derivatives

References

  1. Su YH, Liu YB, Zhang XS. Auxin-cytokinin interaction regulates meristem development. Mol Plant. 2011 Jul;4(4):616-25. doi: 10.1093/mp/ssr007. Epub 2011 Feb 28. PMID: 21357646; PMCID: PMC3146736.
  2. Schaller GE, Bishopp A, Kieber JJ. The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell. 2015 Jan;27(1):44-63. doi: 10.1105/tpc.114.133595. Epub 2015 Jan 20. PMID: 25604447; PMCID: PMC4330578.
  3. Raggi S, Doyle SM, Robert S. Auxin: At the Crossroads Between Chemistry and Biology. Chemical Biology of Plant Biostimulants (Eds D. Geelen and L. Xu). Book Series Wiley Series in Renewable Resources. 2020;122-152. https://doi.org/10.1002/9781119357254.ch5
  4. Sosnowski J, Truba M, Vasileva V. The Impact of Auxin and Cytokinin on the Growth and Development of Selected Crops. Agriculture. 2023; 13(3): 724. https://doi.org/10.3390/agriculture13030724.
  5. Novickienė L, Asakavičiūtė R. Analogues of auxin modifying growth and development of some monocot and dicot plants. Acta Physiol Plant. 2006; 28(6): 509 – 515. https://doi.org/10.1007/s11738-006-0046-6.
  6. Simon S, Kubeš M, Baster P, Robert S, Dobrev PI, Friml J, Petrášek J, Zažímalová E. Defining the selectivity of processes along the auxin response chain: a study using auxin analogues. New Phytol. 2013 Dec;200(4):1034-48. doi: 10.1111/nph.12437. Epub 2013 Aug 5. PMID: 23914741.
  7. Rigal A, Ma Q, Robert S. Unraveling plant hormone signaling through the use of small molecules. Front Plant Sci. 2014 Jul 30;5:373. doi: 10.3389/fpls.2014.00373. PMID: 25126092; PMCID: PMC4115670.
  8. Paque S, Weijers D. Q&A: Auxin: the plant molecule that influences almost anything. BMC Biol. 2016 Aug 10;14(1):67. doi: 10.1186/s12915-016-0291-0. PMID: 27510039; PMCID: PMC4980777.
  9. Ma Q, Grones P, Robert S. Auxin signaling: a big question to be addressed by small molecules. J Exp Bot. 2018 Jan 4;69(2):313-328. doi: 10.1093/jxb/erx375. PMID: 29237069; PMCID: PMC5853230.
  10. Vylíčilová H, Bryksová M, Matušková V, Doležal K, Plíhalová L, Strnad M. Naturally Occurring and Artificial N9-Cytokinin Conjugates: From Synthesis to Biological Activity and Back. Biomolecules. 2020 May 29;10(6):832. doi: 10.3390/biom10060832. PMID: 32485963; PMCID: PMC7356397.
  11. Jameson PE. Zeatin: The 60th anniversary of its identification. Plant Physiol. 2023 May 2;192(1):34-55. doi: 10.1093/plphys/kiad094. PMID: 36789623; PMCID: PMC10152681.
  12. Podlešáková K, Zalabák D, Cudejková M, Plíhal O, Szüčová L, Doležal K, Spíchal L, Strnad M, Galuszka P. Novel cytokinin derivatives do not show negative effects on root growth and proliferation in submicromolar range. PLoS One. 2012;7(6):e39293. doi: 10.1371/journal.pone.0039293. Epub 2012 Jun 18. PMID: 22723989; PMCID: PMC3377648.
  13. Naseem A, Mohammad F. Thidiazuron: From Urea Derivative to Plant Growth Regulator. Singapore: Springer. 2018; 491. https://lib.ugent.be/catalog/ebk01:4100000002892653
  14. Tsygankova VA, Andrusevich YaV, Vasylenko NM, Pilyo SG, Klyuchko SV, Brovarets VS. Screening of Auxin-like Substances among Synthetic Compounds, Derivatives of Pyridine and Pyrimidine. J Plant Sci Phytopathol. 2023; 7: 151-156. DOI: 10.29328/journal.jpsp.1001121.
  15. Tsygankova VA, Andrusevich YaV, Shtompel OI, Kopich VM, Solomyanny RM, Brovarets VS. Study of regulating activity of synthetic low molecular weight heterocyclic compounds, derivatives of pyrimidine on growth of tomato (Solanum lycopersicum L.) seedlings, International Journal of ChemTech Research. 2019; 12(5): 26-38. http://dx.doi.org/10.20902/IJCTR.2019.120504
  16. Tsygankova VA, Voloshchuk IV, Andrusevich YaV, Kopich VM, Pilyo SG, Klyuchko SV, Kachaeva MV, Brovarets VS. Pyrimidine derivatives as analogues of plant hormones for intensification of wheat growth during the vegetation period. Journal of Advances in Biology. 2022; 15: 1-10. https://doi.org/10.24297/jab.v15i.9237.
  17. TsygankovaV A, Andrusevich YaV, Shtompel OI, Solomyanny RM, Hurenko AO, Frasinyuk MS, Mrug GP, Shablykin OV, Pilyo SG, Kornienko AM, Brovarets VS. New Auxin and Cytokinin Related Compounds Based on Synthetic Low Molecular Weight Heterocycles, Chapter 16, In: Aftab T. (Ed.) Auxins, Cytokinins and Gibberellins Signaling in Plants, Signaling and Communication in Plants, Springer Nature Switzerland AG. 2022; 353-377. DOI: https://doi.org/10.1007/978-3-031-05427-3_16.
  18. Tsygankova VA, Voloshchuk IV, Kopich VM, Pilyo SG, Klyuchko SV, Brovarets VS. Studying the effect of plant growth regulators Ivin, Methyur and Kamethur on growth and productivity of sunflower. Journal of Advances in Agriculture. 2023; 14:17-24. https://doi.org/10.24297/jaa.v14i.9453.
  19. Tsygankova VA,Voloshchuk IV, Andrusevich YaV, Kopich VM, Oliynyk OO, Stefanovska TR, Pidlisnyuk V, Pilyo SG, Klyuchko SV, Brovarets VS. Use of synthetic plant growth regulators in agriculture and biotechnology. Polish Journal of Science. 2023; 1(68):12-17. DOI: 5281/zenodo.10131991.
  20. Tsygankova VA, Voloshchuk IV, Pilyo SH, Klyuchko SV, Brovarets VS. Enhancing Sorghum Productivity with Methyur, Kamethur, and Ivin Plant Growth Regulators. Biology and Life Sciences Forum. 2023; 27(1):36. https://doi.org/10.3390/IECAG2023-15222.
  21. Tsygankova VA, Andrusevich YaV, Kopich VM, Voloshchuk IV, Bondarenko OM, Pilyo SG, Klyuchko SV, Brovarets VS. Effect of pyrimidine and pyridine derivatives on the growth and photosynthesis of pea microgreens. Int J Med Biotechnol Genetics. 2023; S1:02:003:15-22. https://scidoc.org/IJMBGS1V2.php.
  22. Tsygankova VA, Kopich VM, Vasylenko NM, Andrusevich YaV, Pilyo SG, Brovarets VS. Phytohormone-like effect of pyrimidine derivatives on the vegetative growth of haricot bean (Phaseolus vulgaris ). Polish Journal of Science. 2024; 1(71):6-13. DOI: 10.5281/zenodo.10675232.
  23. El-Sherbeny MA, El-Ashmawy MB, El-Subbagh HI, El-Emam AA, Badria FA. Synthesis, antimicrobial and antiviral evaluation of certain thienopyrimidine derivatives. European Journal of Medicinal Chemistry. 1995; 30(5):445-449. https://doi.org/10.1016/0223-5234(96)88255-9.
  24. Bhuiyan MD, Rahman KM, Hossain MD, Rahim A, Hossain MI, Abu Naser M. Synthesis and antimicrobial evaluation of some new thienopyrimidine derivatives. Acta Pharm. 2006 Dec;56(4):441-50. PMID: 19839136.
  25. Abdel-Megid M, Elmahdy KM, Elkazak AM, Seada MH, Mohamed OF. Chemistry of Thienopyrimidines and Their Biological Applications. J. Pharm. Appl. Chem. 2016; 2(3):103-127. http://dx.doi.org/10.18576/jpac/020301.
  26. Tolba MS, Ahmed M, Kamal El‐Dean AM, Hassanien R, Farouk M. Synthesis of New Fused Thienopyrimidines Derivatives as Anti‐inflammatory Agents. Journal of Heterocyclic Chemistry. 2017; 55(2):408-418. https://doi.org/10.1002/jhet.3056.
  27. Tolba MS, El-Dean KAM, Ahmed M, Hassanien R. Synthesis, reactions, and biological study of some new thienopyrimidine derivatives as antimicrobial and anti-inflammatory agents. Journal of the Chinese Chemical Society. 2019; 66(5):548-557. https://doi.org/10.1002/jccs.201800292.
  28. Lagardère P, Fersing C, Masurier N, Lisowski V. Thienopyrimidine: A Promising Scaffold to Access Anti-Infective Agents. Pharmaceuticals (Basel). 2021 Dec 27;15(1):35. doi: 10.3390/ph15010035. PMID: 35056092; PMCID: PMC8780093.
  29. Sayed MTM, Hassan RA, Halim PA, El-Ansary AK. Recent updates on thienopyrimidine derivatives as anticancer agents. Med Chem Res. 2023; 32(4):659-681. https://doi.org/10.1007/s00044-023-03040-y.
  30. Vlasova OD, Vlasov SV, Kabachnyy VI, Vlasov VS. The Synthesis, Transformations and Biological Activity of thieno[2,3-d]pyrimidine Derivatives With the Carboxylic Groups As the Substituents in the Pyrimidine Ring.  Org. Pharm. Chem.2020; 18:4-13. DOI: https://doi.org/10.24959/ophcj.20.209835.
  31. Ota C, Kumata S, Kawaguchi S. Novel herbicides, usage thereof, novel thienopyrimidine derivatives, intermediates of the same, and process for production thereof. Patent US20070010402A1. 2007.
  32. Wilding B, Faschauner S, Klempier N. A practical synthesis of 5-functionalizedthieno[2,3-d]pyrimidines. Tetrahedron Lett. 2015; 56(30):4486-4489. DOI: 1016/j.tetlet.2015.05.104.
  33. Abdel-Megid M, Elmahdy KM, Elkazak AM, Seada MH, Mohamed OF. Chemistry of Thienopyrimidines and Their Biological Applications. J. Pharm. Appl. Chem. 2016; 2(3):103-127. http://dx.doi.org/10.18576/jpac/020301.
  34. Wang DW, Li Q, Wen K, Ismail I, Liu DD, Niu CW, Wen X, Yang GF, Xi Z. Synthesis and Herbicidal Activity of Pyrido[2,3-d]pyrimidine-2,4-dione-Benzoxazinone Hybrids as Protoporphyrinogen Oxidase Inhibitors. J Agric Food Chem. 2017; 65(26):5278 - 5286. DOI: 1021/acs.jafc.7b01990.
  35. El-Dean AMK, Abd-Ella AA, Hassanien R, El-Sayed MEA, Zaki RM, Abdel-Raheem SAA. Chemical design and toxicity evaluation of new pyrimidothienotetrahydroisoquinolines as potential insecticidal agents. Toxicol Rep. 2018 Dec 18;6:100-104. doi: 10.1016/j.toxrep.2018.12.004. PMID: 30622903; PMCID: PMC6308254.
  36. Wang DW, Zhang H, Yu SY, Zhang RB, Liang L, Wang X, Yang HZ, Xi Z. Discovery of a Potent Thieno [2,3-d]pyrimidine-2,4-dione-Based Protoporphyrinogen IX Oxidase Inhibitor through an In SilicoStructure-Guided Optimization Approach. J Agric Food Chem. 2021; 69(47):14115-14125. DOI: 1021/acs.jafc.1c05665.
  37. Li JH, Wang Y, Wu YP, Li RH, Liang S, Zhang J, Zhu YG, Xie BJ. Synthesis, herbicidal activity study and molecular docking of novel pyrimidine thiourea. Pestic Biochem Physiol. 2021 Feb;172:104766. doi: 10.1016/j.pestbp.2020.104766. Epub 2020 Dec 25. PMID: 33518053.
  38. Tolba MS, El-Dean KAM, Ahmed M, Sayed HRM, Zaki RM, Mohamed SK, Zawam SA, Abdel-Raheem SAA. Synthesis, reactions, and applications of pyrimidine derivatives. Current Chemistry Letters. 2022; 11:121-138. DOI: 1016/j.pestbp.2020.104766.
  39. Pivazyan VA, Ghazaryan EA, Karapetyan AV, Shainova RS, Harutyunyan SV, Vorskanyan AS, Yengoyan AP, Gomktsyan TA. Ultrasound-assisted green syntheses of novel pyrimidine derivatives and their comparison with conventional methods. Journal of Saudi Chemical Society. 2023; 27(3):101628. https://doi.org/10.1016/j.jscs.2023.101628.
  40. Voytsehovska OV, Kapustyan AV, Kosik OI. Plant Physiology: Praktykum, Parshikova T.V. (Ed.), Lutsk: 2010; 420.
  41. Lichtenthaler H. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology. 1987; 148:331-382.
  42. Lichtenthaler HK, Buschmann C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy Current Protocols in Food Analytical Chemistry (CPFA): John Wiley and Sons, New York. 2001; F4.3.1-F4.3.8.
  43. Bang H, Zhou XK, van Epps HL, Mazumdar M. (Eds.). Statistical Methods in Molecular Series: Methods in molecular biology, New York: Humana press. 2010; 13(620):636.
  44. Calderon-Villalobos LI, Tan X, Zheng N, Estelle M. Auxin perception--structural insights. Cold Spring Harb Perspect Biol. 2010 Jul;2(7):a005546. doi: 10.1101/cshperspect.a005546. Epub 2010 May 26. PMID: 20504967; PMCID: PMC2890193.
  45. Ljung K. Auxin metabolism and homeostasis during plant development. Development. 2013 Mar;140(5):943-50. doi: 10.1242/dev.086363. PMID: 23404103.
  46. Lavy M, Estelle M. Mechanisms of auxin signaling. Development. 2016 Sep 15;143(18):3226-9. doi: 10.1242/dev.131870. PMID: 27624827; PMCID: PMC5047657.
  47. Leyser O. Auxin Signaling. Plant Physiol. 2018 Jan;176(1):465-479. doi: 10.1104/pp.17.00765. Epub 2017 Aug 17. PMID: 28818861; PMCID: PMC5761761.
  48. Pařízková B, Pernisová M, Novák O. What Has Been Seen Cannot Be Unseen-Detecting Auxin In Vivo. Int J Mol Sci. 2017 Dec 16;18(12):2736. doi: 10.3390/ijms18122736. PMID: 29258197; PMCID: PMC5751337.
  49. Fukui K, Hayashi KI. Manipulation and Sensing of Auxin Metabolism, Transport and Signaling. Plant Cell Physiol. 2018 Aug 1;59(8):1500-1510. doi: 10.1093/pcp/pcy076. PMID: 29668988.
  50. Blázquez MA, Nelson DC, Weijers D. Evolution of Plant Hormone Response Pathways. Annu Rev Plant Biol. 2020 Apr 29;71:327-353. doi: 10.1146/annurev-arplant-050718-100309. Epub 2020 Feb 4. PMID: 32017604.
  51. Casanova-Sáez R, Mateo-Bonmatí E, Ljung K. Auxin Metabolism in Plants. Cold Spring Harb Perspect Biol. 2021 Mar 1;13(3):a039867. doi: 10.1101/cshperspect.a039867. PMID: 33431579; PMCID: PMC7919392.
  52. Hwang I, Sheen J, Müller B. Cytokinin signaling networks. Annu Rev Plant Biol. 2012;63:353-80. doi: 10.1146/annurev-arplant-042811-105503. PMID: 22554243.
  53. Kieber JJ, Schaller GE. Cytokinin signaling in plant development. Development. 2018 Feb 27;145(4):dev149344. doi: 10.1242/dev.149344. PMID: 29487105.
  54. Sakakibara H. Cytokinins: Activity, Biosynthesis, and Translocation. Rev. Plant Biol. 2006; 57:431-449. DOI: 10.1146/annurev.arplant.57.032905.105231.
  55. Mok DW, Mok MC. CYTOKININ METABOLISM AND ACTION. Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:89-118. doi: 10.1146/annurev.arplant.52.1.89. PMID: 11337393.
  56. Hönig M, Plíhalová L, Husičková A, Nisler J, Doležal K. Role of Cytokinins in Senescence, Antioxidant Defence and Photosynthesis. Int J Mol Sci. 2018 Dec 14;19(12):4045. doi: 10.3390/ijms19124045. PMID: 30558142; PMCID: PMC6321018.
  57. Wu W, Du K, Kang X, Wei H. The diverse roles of cytokinins in regulating leaf development. Hortic Res. 2021 Jun 1;8(1):118. doi: 10.1038/s41438-021-00558-3. PMID: 34059666; PMCID: PMC8167137.
  58. Zhang YM, Guo P, Xia X, Guo H, Li Z. Multiple Layers of Regulation on Leaf Senescence: New Advances and Perspectives. Front Plant Sci. 2021 Dec 6;12:788996. doi: 10.3389/fpls.2021.788996. PMID: 34938309; PMCID: PMC8685244.
  59. Huang P, Li Z, Guo H. New Advances in the Regulation of Leaf Senescence by Classical and Peptide Hormones. Front Plant Sci. 2022 Jun 28;13:923136. doi: 10.3389/fpls.2022.923136. PMID: 35837465; PMCID: PMC9274171.
  60. Hu Y, Shani E. Cytokinin activity - transport and homeostasis at the whole plant, cell, and subcellular levels. New Phytol. 2023 Sep;239(5):1603-1608. doi: 10.1111/nph.19001. Epub 2023 May 27. PMID: 37243527.

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?