Abstract

Research Article

Effect of Whitefly (Bemisia tabaci Genn.) Infestation on the Growth Parameters of Eggplant (Solanum melongena L.) in Kebbi State, Nigeria

Mustapha Abubakar*, Sanusi Muhammad, Bhupendra Koul, Anas Hamisu and Danladi Garba Hani

Published: 02 April, 2024 | Volume 8 - Issue 1 | Pages: 029-037

Whiteflies (Bemisia tabaci Genn.) are aggressive hemipteran species that depend primarily on leaf tissue for their nourishment, causing substantial damages and yield losses in their hosts. This study was carried out to assess the effect of whitefly infestation on the growth parameters of one of the commercial eggplant cultivars (round green  Solanum melongena L) under filed conditions. The trial consists of four treatments (T1= 15, T2= 30, T3= 45 and control (T4) = 0 whiteflies/plot) replicated four times. The result revealed that all the parameters assessed are negatively affected by whitefly infestation with plants in treatment (T3) being most affected while those in T1 are least affected. The dry weight recorded least value (1.1 g/leaf) having the highest percentage reduction (69.11%) followed by leaf area with 152.5cm2 (48.83% reduction) while the number of leaves was least affected recording 50.3 leaves/plant (18.09% reduction) at 90 days after infestation in 2022 experiment. In 2023 experiment, similar results were recorded with plants in T3 being most affected. Dry weight of the leaves had the lowest value  (1.3g/leaf) representing the highest reduction (68.30%) followed by the  leaf area with 167.3cm2 (44.8% reduction) with the number of leaves also being least affected, recording 52.1 leaves/plant representing 9.40% reduction with plants in treatment T1,  at 90 days after infestation. The highest reduction in yield was also recorded with plants in T3 (92.10, 90.10%) while the least was observed in T1 (86.8 and 85.70%) for the respective trials (2022 and 2023). The result shows the level of susceptibility of the variety examined to whitefly infestation, demonstrating the urgent needs for the development of eco-friendly and sustainable whitefly management regimes for improved eggplant production in the area.

Read Full Article HTML DOI: 10.29328/journal.jpsp.1001128 Cite this Article Read Full Article PDF

Keywords:

Eggplant; Growth parameters; Whiteflies; Infestation; Leaf damage; Yield losses

References

  1. Hanson PM, Yang RY, Tsou SCS, Ledesma D, Engle LT, Lee C. Diversity in eggplant superoxide scavenging activity, total phenolics, and ascorbic acid. J Food Compos Analy. 2006; 19(7):594-60.
  2. Chapman MA. Introduction: the importance of eggplant. In The Eggplant Genome Springer Cham. 2019; 1-
  3. Ndagana MK. Effect of plant spacing on growth and yield components of african eggplants (Solanum melongena L.) in the Northern guinea savanna of Nigeria. Nigeria Agric J. 2020; 51(2):233-236.
  4. Meyer RS, Whitaker BD, Little DP, Wu SB, Kennelly EJ, Long CL, Litt A. Parallel reductions in phenolic constituents resulting from the domestication of eggplant. Phytochemistry. 2015 Jul;115:194-206. doi: 10.1016/j.phytochem.2015.02.006. Epub 2015 Mar 23. PMID: 25813879.
  5. Farouk S, Almutairi AB, Alharbi YO, Al-Bassam WI. Acaricidal Efficacy of Jasmine and Lavender Essential Oil or Mustard Fixed Oil against Two-Spotted Spider Mite and Their Impact on Growth and Yield of Eggplants. Biology (Basel). 2021 May 6;10(5):410. doi: 10.3390/biology10050410. PMID: 34066361; PMCID: PMC8148115.
  6. Gürbüz N, Uluişik S, Frary A, Frary A, Doğanlar S. Health benefits and bioactive compounds of eggplant. Food Chem. 2018 Dec 1;268:602-610. doi: 10.1016/j.foodchem.2018.06.093. Epub 2018 Jun 20. PMID: 30064803.
  7. Rodan MA, Hassandokht MR,Sadeghzadeh-Ahari D, Mousavi A. Mitigation of drought stress in eggplant by date straw and plastic mulches. J Saudi SocAgricSci. 2020; 19(7):492-
  8. Gowda A, Rydel TJ, Wollacott AM, Brown RS, Akbar W, Clark TL, Flasinski S, Nageotte JR, Read AC, Shi X, Werner BJ, Pleau MJ, Baum JA. A transgenic approach for controlling Lygus in cotton. Nat Commun. 2016 Jul 18;7:12213. doi: 10.1038/ncomms12213. Erratum in: Nat Commun. 2020 Feb 26;11(1):1152. PMID: 27426014; PMCID: PMC4960306.
  9. Naeem YM, Ugur S. Nutritional content and health benefits of eggplant. Turk J Agric Food Sci and Technol. 2019; 7:31-36.
  10. Jaiswal AK. Nutritional composition and antioxidant properties of fruits and vegetables. Academic Press 2020.
  11. Department of Biotechnology (DBT). Biology of brinjal. 2014. http://www. indiaenvironmentportal.org.in/files/brinjal.pdf accessed17 May, 2023.
  12. Mangino G, Vilanova S, Plazas M, Prohens J, Gramazio P. Fruit shape morphometric analysis and QTL detection in a set of eggplant introgression lines. Sci Horticul. 2021; 282:110006.
  13. Ghosh SK. Eggplant (Solanum melongena L.) and climate resilient agricultural practices. New Delhi Publishers, New Delhi: 2022; 01-
  14. Abubakar M, Koul B. Field assessment of the effects of Citrus aurantifolia Christm and Eucalyptus camaldulensis Dehnh extracts for the management of Bemisia tabaci Gennadius on Solanum melongena L. in north west Nigeria. Int. J. Trop. Insect Sci. 2023; 1-15.
  15. Friedman M. Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes. J Agric Food Chem. 2015 Apr 8;63(13):3323-37. doi: 10.1021/acs.jafc.5b00818. Epub 2015 Mar 30. PMID: 25821990.
  16. PBI: Planetary biodiversity inventory. Solanaceae Source. 2011. http://www.nhm.ac.uk/solanaceaesource/ Solanum melongena
  17. Knapp S, Xavier A, Jaime P. Eggplant (Solanummelongena L.): Taxonomy and relationships. Eggplant Plant Genome. 2019. https://doi.org/10.1007/978-3-319-99208-2_2
  18. Magioli C, Mansur E. Eggplant (Solanummelongena L.) tissue culture, genetic transformation and use as an alternative model plant. Acta Bot Bras. 2005; 19(1): 139-148.
  19. Shimiri F, Taskin H. Current progress on the responses of eggplant to ultra-low temperatures during production. Hortic Stud. 2022; 39(2):72-
  20. Atta B, Rizwan M, Sabir AM, Gogi MD, Ali K. Damage potential of Triboliumcastaneum (Herbst)(Coleoptera: Tenebrionidae) on wheat grains stored in hermetic and non-hermetic storage bags. Int J Trop Insect Sci. 2019; 40(1):27-
  21. Palaniswami MS. Bemisia tabaci (Gennadius) as vector of plant viruses. InAppl Plant Virol Academic Press. 2020; 335-
  22. Iqbal N, Hazra DK, Purkait A, Agrawal A, Kumar J. Bioengineering of neem nano-formulation with adjuvant for better adhesion over applied surface to give long term insect control. Colloids Surf B Biointerfaces. 2022 Jan;209(Pt 2):112176. doi: 10.1016/j.colsurfb.2021.112176. Epub 2021 Oct 26. PMID: 34785423.
  23. Johnston N, Paris T, Paret ML, Freeman J, Martini X. Repelling whitefly (Bemisia tabaci) using limonene-scented kaolin: A novel pest management strategy. Crop Prot. 2022; 154:105905.
  24. Climate change the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (IPCC); Cambridge university press: Cambridge, UK; New York, NY, USA. 2007.
  25. Concellon A, Anon MC, Chaves AR. Effect of low temperature storage on physical and physiological characteristics of eggplant fruit (Solanum melongena L.). LWT-Food Sci and Technol. 2007; 40(3):389-3
  26. Akinci IE, Akinci S, Yilmaz K, Dikici, H. Response of eggplant varieties (Solanummelongena L.) to salinity in germination and seedling stages. N Z J Crop HorticSci. 2004; 32: 193-200.
  27. Al-Zubaidi AH. Effects of salinity stress on growth and yield of two varieties of eggplant under greenhouse conditions. Res on Crop. 2018; 19(3):436-
  28. Monti A, Brugnoli E, Scartazza A, Amaducci MT. The effect of transient and continuous drought on yield, photosynthesis and carbon isotope discrimination in sugar beet (Beta vulgaris L.). J Exp Bot. 2006;57(6):1253-62. doi: 10.1093/jxb/erj091. Epub 2006 Feb 8. PMID: 16467409.
  29. Padilha G, Pozebon H, Patias LS, Ferreira DR, Castilhos LB, Forgiarini SE, Donatti A, Bevilaqua JG, Marques RP, Moro D, Rohrig A. Damage assessment of Bemisia tabaci and economic injury level on soybean. Crop Prot. 2021; 143:105542.
  30. Alam I, Salimullah M. Genetic engineering of eggplant (Solanummelongena L.): Progress, controversy and potential. Horticulture. 2021; 4:78.
  31. Sarker KK, Quamruzzaman AK, Uddin MN, Rahman A, Quddus A, Biswas SK, Gaber A, Hossain A. Evaluation of 10 Eggplant (Solanum melongena L.) Genotypes for development of cultivars suitable for short-term waterlogged conditions. GesundePflanzen. 2022; 23:1-
  32. Youssef MA, Abd El-Gawad AM. Accumulation and translocation of heavy metals in eggplant (Solanum melongena L.) grown in a contaminated soil. JEnergy Environ Chem  2018; 3:9-18.
  33. Nahar N, Islam MR, Uddin MM, de Jong P, Struik PC, Stomph TJ. Disease management in eggplant (SolanummelongenaL.) nurseries also reduces wilt and fruit rot in subsequent plantings: A participatory testing in Bangladesh. Crop Prot120. 2019; 113-
  34. Bhatti KH, Nazia K, Umer R, Khalid H, Khalid N, Siddiqi EH. Effects of biotic stresses on eggplant (Solanummelongena L.). World Appl Sci J. 2013; 26(3):302-3
  35. Nishat S, Hamim I, Khalil MI, Ali MA, Hossain MA, Meah MB, Islam MR. Genetic diversity of the bacterial wilt pathogen Ralstonia solanacearum using a RAPD marker. C R Biol. 2015 Nov;338(11):757-67. doi: 10.1016/j.crvi.2015.06.009. Epub 2015 Aug 21. PMID: 26302834.
  36. Lu S, Chen M, Li J, Shi Y, Gu Q, Yan F. Changes in Bemisia tabaci feeding behaviors caused directly and indirectly by cucurbit chlorotic yellows virus. Virol J. 2019 Aug 22;16(1):106. doi: 10.1186/s12985-019-1215-8. PMID: 31438971; PMCID: PMC6704720.
  37. Rodríguez E, Téllez MM, Janssen D. Whitefly Control Strategies against Tomato Leaf Curl New Delhi Virus in Greenhouse Zucchini. Int J Environ Res Public Health. 2019 Jul 26;16(15):2673. doi: 10.3390/ijerph16152673. PMID: 31357394; PMCID: PMC6696309.
  38. Lengai GM, Muthomi JW, Mbega ER. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. SciAfr. 2020; 7: e00239.
  39. Nabity PD, Zavala JA, DeLucia EH. Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. Ann Bot. 2009 Feb;103(4):655-63. doi: 10.1093/aob/mcn127. Epub 2008 Jul 26. PMID: 18660492; PMCID: PMC2707346.
  40. Sani I, Ismail SI, Abdullah S, Jalinas J, Jamian S, Saad N. A Review of the Biology and Control of Whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), with Special Reference to Biological Control Using Entomopathogenic Fungi. Insects. 2020 Sep 10;11(9):619. doi: 10.3390/insects11090619. PMID: 32927701; PMCID: PMC7564875.
  41. Ugwu JA, Kareem KT, Aluko JO. Insecticidal activities of aqueous extracts of five nigerian aromatic spices against eggplant defoliators and fruit borer Leucinodes orbonalis Guenee: Lepidoptera: Crambidae. Tanzan J Sci. 2021; 47(3):1322-132
  42. Ghosh UK. study on Whitefly (Bemia tabaci) infestations on eggplant and related crops highlights the need for safe pesticides to conserve biodiversity. Book: Environmental Challenges and Biodiversity (Impact, Peril, and Conservation).Edition: 1.Chapter 1Publisher: Abhiram Prakashan, Lucknow. 2022; 1-33.
  43. Solanki RD, Jha S. Population dynamics and biology of whitefly (Bemisia tabaci Gennadius) on sunflower (Helianthus annuus L.). J PharmacognP hytochem. 2018; 7: 3055-3058.
  44. Perring TM, Stansly PA, Liu TX, Smith HA, Andreason SA. Whiteflies: Biology, ecology, and management. In Sustainable Management of Arthropod Pests of Tomato; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands. 2018; 73-110.
  45. Boopathi T, Karuppuchamy P, Kalyanasundaram MP, Mohankumar S, Ravi M, Singh SB. Microbial control of the exotic spiralling whitefly, Aleurodicus dispersus (Hemiptera: Aleyrodidae) on eggplant using entomopathogenic fungi. Afr J Microbiol Res. 2015; 9(1):39-
  46. Islam MT, Shunxiang R. Effects of sweetpotato whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) infestation on eggplant (Solanum melongena L.) leaf. J Pest Sci. 2009; 82:211-215.
  47. Da Silva Oliveira CE, Hoffmann LV, Toscano LC, Queiroz MS, Zoz T, Witt TW. Resistance of cotton genotypes to silverleaf whitefly (Bemisia tabaci Gennadius; Biotype B). Int J Trop Insect Sci. 2021; 41(2):1697-
  48. Chandi RS, Kataria SK, Fand BB. Effect of temperature on biological parameters of cotton whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Int J Trop Insect Sci. 2021; 41(2):1823-18
  49. Ozundu C, Obong UM. Life and people of Aliero. Nigeria. 2008; 9-10.
  50. Abubakar M, Keta JN, Anas H, Mohammed MT, Abdullah HA. Fungi associated with post- harvest decay of Okra (Abelmoschusesculentus L.) in Aliero local government area, Kebbi State, Nigeria. JInnov Res Life Sci. 2020; 1(1):45-
  51. Islam MT, Dzolkhifli O, Latif MA and Mahbub MM. The integrated use of entomopathogenic fungus, Beauveriabassiana with botanical insecticide, neem against Bemisia tabaci on eggplant. AfrJ Microbiol  2011; 5(21): 3409-3413.
  52. Saeedi Z, Ziaee M. Biochemical responses of two sugarcane varieties to whitefly Neomaskellia andropogonis infestation and its control by a new butenolide insecticide, flupyradifurone. Agric For. 2020; 66 (1): 69-81.
  53. Farina A, Barbera AC, Leonardi G, Massimino Cocuzza GE, Suma P, Rapisarda C. Bemisia tabaci (Hemiptera: Aleyrodidae): What Relationships with and Morpho-Physiological Effects on the Plants It Develops on? Insects. 2022 Apr 1;13(4):351. doi: 10.3390/insects13040351. PMID: 35447793; PMCID: PMC9030232.
  54. Li Q, Tan W, Xue M, Zhao H, Wang C. Dynamic changes in photosynthesis and chlorophyll fluorescence in Nicotiana tabacum infested by Bemisia tabaci (Middle East–Asia Minor 1) nymphs. Arthropod-Plant Interact. 2013; 7: 431-443.
  55. Buntin DG, Gilbertz DA, Oetting RD. Chlorophyll loss and gas exchange in tomato leaves after feeding injury by Bemisia tabaci (Homoptera: Aleyrodidae). J Econ Entomol. 1993; 86: 517-522.
  56. Jimenez DR, Yokomi RK, Mayer RT, Shapiro JP. Cytology and physiology of silverleaf whitefly-induced squash Silverleaf. PhysiolMol Plant Pathol. 1995; 46(3):227-242.
  57. Selvaraj K, Sumalatha BV, Poornesha B, Ramanujam B, Shylesha AN. Biological control of invasive rugo siralling whitefly in coconut. In Biological and Utilizatin of Insect in North East; Hebbal Bangalore India. 2019; 1-14.
  58. Schutze IX, Yamamoto PT, Malaquias JB, Naranjo SE. Network correlation to evidence the influence of Bemisia tabaci feeding in the photosynthesis and foliar sugar and starch composition in soybean. Dissertation, University Sao Paulo. 2021.
  59. Little EL. Georgia Plant Disease Loss Estimates; Annual publication 102-10; University of Georgia Cooperative Extension: Athens, GA, USA, 2019.
  60. Little EL. Georgia plant disease loss estimates; Annual Publication, University of Georgia Cooperative Extension: Athens, GA, USA. 2016; 102-109.
  61. De Lima Toledo CA, da Silva Ponce F, Oliveira MD, Aires ES, Seabra Júnior S, Lima GPP, de Oliveira RC. Change in the Physiological and Biochemical Aspects of Tomato Caused by Infestation by Cryptic Species of Bemisia tabaci MED and MEAM1. Insects. 2021 Dec 10;12(12):1105. doi: 10.3390/insects12121105. PMID: 34940193; PMCID: PMC8707048.

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?