Abstract

Research Article

The Use of Thioxopyrimidine Derivatives as New Regulators of Growth and Photosynthesis of Barley

Tsygankova VA*, Andrusevich YaV, Vasylenko NM, Kopich VM, Solomyannyi RM, Popilnichenko SV, Kozachenko OP, Pilyo SG and Brovarets VS

Published: 02 July, 2024 | Volume 8 - Issue 2 | Pages: 090-099

New synthetic compounds - thioxopyrimidine derivatives as regulators of vegetative growth and photosynthesis of spring barley (Hordeum vulgare L.) variety Acordine were studied. The growth-regulatory effect of new synthetic compounds, thioxopyrimidine derivatives, used in a concentration of 10-6M, was compared with the growth-regulatory effect of a plant hormone auxin IAA (1H-indol-3-yl)acetic acid) or synthetic plant growth regulators, derivatives of sodium and potassium salts of 6-methyl-2-mercapto-4-hydroxypyrimidine (Methyur, Kamethur), N-oxide-2,6-dimethylpyridine (Ivin), used in a similar concentration of 10-6M. The conducted study showed the similarity of the growth-regulatory effects of synthetic compounds, thioxopyrimidine derivatives, the plant hormone auxin IAA, and synthetic plant growth regulators Methyur, Kamethur, and Ivin. Morphometric parameters (average length of shoots (mm), average length of roots (mm), and average biomass of 10 plants (g)) and biochemical parameters (content of photosynthetic pigments chlorophylls a, b, a+b and carotenoids (µg/ml)) of barley plants treated with the plant hormone auxin IAA or synthetic plant growth regulators Methyur, Kamethur, Ivin or thioxopyrimidine derivatives were increased after 4 weeks compared to control plants. The dependence of the growth-regulatory effect of synthetic compounds, thioxopyrimidine derivatives on their chemical structure was analyzed. The use of the synthetic plant growth regulators, derivatives of sodium salt of 6-methyl-2-mercapto-4-hydroxypyrimidine (Methyur), potassium salt of 6-methyl-2-mercapto-4-hydroxypyrimidine (Kamethur), N-oxide-2,6-dimethylpyridine (Ivin) and selected most active synthetic compounds, thioxopyrimidine derivatives for regulating the growth and photosynthesis of spring barley (Hordeum vulgare L.) variety Acordine is proposed.

Read Full Article HTML DOI: 10.29328/journal.jpsp.1001139 Cite this Article Read Full Article PDF

Keywords:

Hordeum vulgare L.; IAA; Methyur; Kamethur; Ivin; Thioxopyrimidine derivatives

References

  1. Zhou MX. Barley production and consumption. In: Zhang G, Li C, editors. Genetics and Improvement of Barley Malt Quality. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg; 2009. p. 1-17. Available from: https://link.springer.com/chapter/10.1007/978-3-642-01279-2_1
  2. Petersen PB, Munck L. Whole-crop utilization of barley, including potential new uses. In: MacGregor AW, Bhatty RS, editors. Barley: Chemistry and Technology. American Association of Cereal Chemists Inc. St Paul, Minnesota, USA; 1993; 437-474.
  3. Cowan WD, Mollgaard A. Alternative uses of barley components in the food and feed industries. In: Sparrow RCM, Lance, Henry RJ, editors. Alternative End Uses of Barley. DHB, Waite Agricultural Research Institute, Glen Osmond, Australia; 1988; 35-41.
  4. Anderson R, Bayer PE, Edwards D. Climate change and the need for agricultural adaptation. Curr Opin Plant Biol. 2020 Aug;56:197-202. doi: 10.1016/j.pbi.2019.12.006. Epub 2020 Feb 11. PMID: 32057694.
  5. Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front Plant Sci. 2017 Jun 29;8:1147. doi: 10.3389/fpls.2017.01147. PMID: 28706531; PMCID: PMC5489704.
  6. Rejeb IB, Pastor V, Mauch-Mani B. Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants. 2014;3:458-475. Available from: https://www.mdpi.com/2223-7747/3/4/458
  7. Dresselhaus T, Hückelhoven R. Biotic and abiotic stress responses in crop plants. Agronomy. 2018;8:267. Available from: https://www.mdpi.com/2073-4395/8/11/267
  8. Gimenez E, Salinas M, Manzano-Agugliaro F. Worldwide research on plant defense against biotic stresses as improvement for sustainable agriculture. Sustainability. 2018;10:391. Available from: https://www.mdpi.com/2071-1050/10/2/391
  9. Tidemann BD, O’Donovan JT, Izydorczyk M, Turkington TK, Oatway L, Beres B, Mohr R, May WE, Harker KN, Johnson EN, de Gooijer H. Effects of plant growth regulator applications on malting barley in western Canada. Can J Plant Sci. 2020;100(6):653-665. doi: 10.1139/cjps-2019-0200
  10. McMillan T, Tidemann BD, OʼDonovan JT, Izydorczyk MS. Effects of plant growth regulator application on the malting quality of barley. J Sci Food Agric. 2020 Mar 30;100(5):2082-2089. doi: 10.1002/jsfa.10231. Epub 2020 Jan 27. PMID: 31875963.
  11. Kupke BM, Tucker MR, Able JA, Porker KD. Manipulation of barley development and flowering time by exogenous application of plant growth regulators. Front Plant Sci. 2022;12:3171. doi: 10.3389/fpls.2021.694424.
  12. Przetakiewicz A, Orczyk W, Nadolska-Orczyk A. The effect of auxin on plant regeneration of wheat, barley and triticale. Plant Cell Tissue Organ Cult. 2003;73(3):245-256. doi: 10.1023/A:1023030511800.
  13. Novickienė L, Asakavičiūtė R. Analogues of auxin modifying growth and development of some monocot and dicot plants. Acta Physiol Plant. 2006;28:509-515. doi: 10.1007/s11738-006-0046-6.
  14. Cansev A, Gülen H, Zengin MK, Ergin S, Cansev M. Use of pyrimidines in stimulation of plant growth and development and enhancement of stress tolerance. WIPO Patent WO 2014/129996A1. August 28, 2014. Available from: https://patents.google.com/patent/WO2014129996A1/en
  15. Wang DW, Li Q, Wen K, Ismail I, Liu DD, Niu CW, Wen X, Yang GF, Xi Z. Synthesis and herbicidal activity of pyrido[2,3-d]pyrimidine-2,4-dione-benzoxazinone hybrids as protoporphyrinogen oxidase inhibitors. J Agric Food Chem. 2017;65(26):5278-5286. doi: 10.1021/acs.jafc.7b01990.
  16. Kamal El-Dean AM, Abd-Ella AA, Hassanien R, El-Sayed MEA, Zaki RM, Abdel-Raheem Sh AA. Chemical design and toxicity evaluation of new pyrimidothienotetrahydroisoquinolines as potential insecticidal agents. Toxicol Rep. 2019;6:100-104. doi: 10.1016/j.toxrep.2018.12.004.
  17. Li JH, Wang Y, Wu YP, Li RH, Liang S, Zhang J, Zhu YG, Xie BJ. Synthesis, herbicidal activity study and molecular docking of novel pyrimidine thiourea. Pestic Biochem Physiol. 2021;172:104766. doi: 10.1016/j.pestbp.2020.104766.
  18. Tsygankova VA, Voloshchuk IV, Kopich VM, Pilyo SG, Klyuchko SV, Brovarets VS. Studying the effect of plant growth regulators Ivin, Methyur and Kamethur on growth and productivity of sunflower. J Adv Agric. 2023;14:17-24. doi: 10.24297/jaa.v14i.9453.
  19. Tsygankova VA, Andreev AM, Andrusevich YaV, Pilyo SG, Klyuchko SV, Brovarets VS. Use of synthetic plant growth regulators in combination with fertilizers to improve wheat growth. Int J Med Biotechnol Genet. 2023;S1:02:002:9-14.
  20. Tsygankova VA, Voloshchuk IV, Pilyo SH, Klyuchko SV, Brovarets VS. Enhancing Sorghum Productivity with Methyur, Kamethur, and Ivin Plant Growth Regulators. Biology and Life Sciences Forum. 2023;27(1):36. https://doi.org/10.3390/IECAG2023-15222.
  21. Pidlisnyuk V, Mamirova A, Newton RA, Stefanovska T, Zhukov O, Tsygankova V, Shapoval P. The role of plant growth regulators in Miscanthus × giganteus utilisation on soils contaminated with trace elements. Agronomy. 2022;12(12):2999. https://doi.org/10.3390/agronomy12122999.
  22. Tsygankova V, Andrusevich Ya, Shtompel O, Romaniuk O, Yaikova M, Hurenko A, Solomyanny R, Abdurakhmanova E, Klyuchko S, Holovchenko O, Bondarenko O, Brovarets V. Application of Synthetic Low Molecular Weight Heterocyclic Compounds Derivatives of Pyrimidine, Pyrazole and Oxazole in Agricultural Biotechnology as New Plant Growth Regulating Substances. Int J Med Biotechnol Genetics. 2017;02(2):10-32. DOI: dx.doi.org/10.19070/2379-1020-SI02002.
  23. Tsygankova V, Andrusevich Ya, Kopich V, Shtompel O, Veligina Y, Pilyo S, Kachaeva M, Kornienko A, Brovarets V. Use of Oxazole and Oxazolopyrimidine to Improve Oilseed Rape Growth. Scholars Bulletin. 2018;4(3):301-312. DOI: 10.21276/sb.2018.4.3.8.
  24. Tsygankova VA, Andrusevich YaV, Shtompel OI, Solomyanny RM, Hurenko AO, Frasinyuk MS, Mrug GP, Shablykin OV, Pilyo SG, Kornienko AM, Brovarets VS. Study of auxin-like and cytokinin-like activities of derivatives of pyrimidine, pyrazole, isoflavones, pyridine, oxazolopyrimidine and oxazole on haricot bean and pumpkin plants. International Journal of ChemTechResearch. 2018;11(10):174-190. DOI: http://dx.doi.org/10.20902/IJCTR.2018.111022.
  25. Tsygankova V, Andrusevich Ya, Shtompel O, Kopich V, Solomyanny R, Bondarenko O, Brovarets V. Phytohormone-like effect of pyrimidine derivatives on the regulation of vegetative growth of tomato. International Journal of Botany Studies. 2018;3(2):91-102.
  26. Tsygankova VA, Voloshchuk IV, Andrusevich YaV, Kopich VM, Pilyo SG, Klyuchko SV, Kachaeva MV, Brovarets VS. Pyrimidine derivatives as analogues of plant hormones for intensification of wheat growth during the vegetation period. Journal of Advances in Biology. 2022;15:1-10. URL: https://doi.org/10.24297/jab.v15i.9237.
  27. Tsygankova VA, Andrusevich YaV, Kopich VM, Voloshchuk IV, Pilyo SG, Klyuchko SV, Brovarets VS. Application of pyrimidine and pyridine derivatives for regulation of chickpea (Cicer arietinum L.) growth. International Journal of Innovative Science and Research Technology (IJISRT). 2023;8(6):19-28. DOI: https://doi.org/10.5281/zenodo.8020671. URL: https://ijisrt.com/assets/upload/files/IJISRT23JUN203.pdf.
  28. Tsygankova VA, Kopich VM, Voloshchuk IV, Pilyo SG, Klyuchko SV, Brovarets VS. New growth regulators of barley based on pyrimidine and pyridine derivatives. Sciences of Europe. 2023;124:13-23. DOI: 10.5281/zenodo.8327852. URL: https://doi.org/10.5281/zenodo.8327852.
  29. Tsygankova VA, Andrusevich YaV, Kopich VM, Voloshchuk IV, Bondarenko OM, Pilyo SG, Klyuchko SV, Brovarets VS. Effect of pyrimidine and pyridine derivatives on the growth and photosynthesis of pea microgreens. Int J Med Biotechnol Genetics. 2023;S1:02:003:15-22. URL: https://scidoc.org/IJMBGS1V2.php.
  30. Tsygankova VA, Andrusevich YaV, Vasylenko NM, Pilyo SG, Klyuchko SV, Brovarets VS. Screening of Auxin-like Substances among Synthetic Compounds, Derivatives of Pyridine and Pyrimidine. J Plant Sci Phytopathol. 2023;7:151-156. DOI: 10.29328/journal.jpsp.1001121. URL: https://www.plantsciencejournal.com/articles/jpsp-aid1121.php.
  31. Tsygankova VA, Kopich VM, Vasylenko NM, Andrusevich YaV, Pilyo SG, Brovarets VS. Phytohormone-like effect of pyrimidine derivatives on the vegetative growth of haricot bean (Phaseolus vulgaris L.). Polish Journal of Science. 2024;1(71):6-13. DOI: 10.5281/zenodo.10675232.
  32. Alewu B, Nosiri C. Pesticides and Human Health, Pesticides in the Modern World - Effects of Pesticides Exposure. In: Stoytcheva M, ed. InTechOpen. 2011. URL: https://www.intechopen.com/chapters/19601.
  33. Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front Public Health. 2016 Jul 18;4:148. doi: 10.3389/fpubh.2016.00148. PMID: 27486573; PMCID: PMC4947579.
  34. Goswami SK, Singh V, Chakdar H, Choudhary P. Harmful effects of fungicides - current status. Inter J Agric Environ Biotech. 2018;1025-1033. URL: https://www.academia.edu/74045392/Harmful_Effects_of_Fungicides_Current_Status.
  35. Mahmood I, Imadi SR, Shazadi K, Gul A, Hakeem K. Effects of Pesticides on Environment. In: Hakeem KR, et al., eds. Plant, Soil and Microbes Volume 1: Implications in Crop Science. Springer International Publishing; 2016:253-269. DOI: 10.1007/978-3-319-27455-3_13.
  36. Voytsehovska OV, Kapustyan AV, Kosik OI. Plant Physiology: Praktykum. In: Parshikova TV, ed. Lutsk: Teren; 2010. 420 p.
  37. Lichtenthaler H. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology. 1987;148:331-382.
  38. Lichtenthaler HK, Buschmann C. Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Current Protocols in Food Analytical Chemistry (CPFA). John Wiley and Sons; New York; 2001. F4.3.1–F4.3.8.
  39. Bang H, Zhou XK, van Epps HL, Mazumdar M. Statistical Methods in Molecular Biology. Methods in molecular biology series. New York: Humana press; 2010. 13(620):636 p. URL: https://doi.org/10.1007/978-1-60761-580-4.
  40. Miransari M, Smith DL. Plant hormones and seed germination. Environmental and Experimental Botany. 2014;99:110-121. https://doi.org/10.1016/j.envexpbot.2013.11.005.
  41. Schaller GE, Bishopp A, Kieber JJ. The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell. 2015 Jan;27(1):44-63. doi: 10.1105/tpc.114.133595. Epub 2015 Jan 20. PMID: 25604447; PMCID: PMC4330578.
  42. Sosnowski J, Truba M, Vasileva V. The Impact of Auxin and Cytokinin on the Growth and Development of Selected Crops. Agriculture. 2023;13(3):724. URL: https://doi.org/10.3390/agriculture13030724.
  43. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. Molecular Cell Biology. Section 16.3, Photosynthetic Stages and Light-Absorbing Pigments. 4th Edtn. New York: W.H. Freeman and Company; 2000.
  44. Tapiero H, Townsend DM, Tew KD. The role of carotenoids in the prevention of human pathologies. Biomed Pharmacother. 2004;58(2):100-110. doi: 10.1016/j.biopha.2003.12.006.
  45. Bhatt T, Patel K. Carotenoids: Potent to Prevent Diseases Review. Nat Prod Bioprospect. 2020 Jun;10(3):109-117. doi: 10.1007/s13659-020-00244-2. Epub 2020 May 13. PMID: 32405969; PMCID: PMC7253555.
  46. Wu W, Du K, Kang X, Wei H. The diverse roles of cytokinins in regulating leaf development. Hortic Res. 2021;8:118, 1-13. URL: https://doi.org/10.1038/s41438-021-00558-3.
  47. Hönig M, Plíhalová L, Husičková A, Nisler J, Doležal K. Role of Cytokinins in Senescence, Antioxidant Defence and Photosynthesis. Int J Mol Sci. 2018 Dec 14;19(12):4045. doi: 10.3390/ijms19124045. PMID: 30558142; PMCID: PMC6321018.
  48. Zhang YM, Guo P, Xia X, Guo H, Li Z. Multiple Layers of Regulation on Leaf Senescence: New Advances and Perspectives. Front Plant Sci. 2021 Dec 6;12:788996. doi: 10.3389/fpls.2021.788996. PMID: 34938309; PMCID: PMC8685244.
  49. Huang P, Li Z, Guo H. New Advances in the Regulation of Leaf Senescence by Classical and Peptide Hormones. Front Plant Sci. 2022 Jun 28;13:923136. doi: 10.3389/fpls.2022.923136. PMID: 35837465; PMCID: PMC9274171.
  50. Tsygankova VA, Andrusevich YaV, Vasylenko NM, Kopich VM, Popilnichenko SV, Pilyo SG, Brovarets VS. Auxin-like and cytokinin-like effects of new synthetic pyrimidine derivatives on the growth and photosynthesis of wheat. J Plant Sci Phytopathol. 2024;8(1):15–24. DOI: https://dx.doi.org/10.29328/journal.jpsp.1001126.
  51. Tsygankova VA, Vasylenko NM, Andrusevich YaV, Kopich VM, Solomyannyi RM, Pilyo SG, Bondarenko OM, Popilnichenko SV, Brovarets VS. New wheat growth regulators based on thioxopyrimidine derivatives. Int J Med Biotechnol Genetics. 2024;S1:02:004:23-30. Available at: https://scidoc.org/specialissues/IJMBG/S1V2/IJMBG-2379-1020-S1-02-004.pdf.
  52. Tsygankova VA, Andrusevich YaV, Vasylenko NM, Kopich VM, Pilyo SG, Solomyannyi RM, Popilnichenko SV, Bondarenko OM, Brovarets VS. The use of thioxopyrimidine derivatives for the regulation of vegetative growth of wheat. J Med Botany. 2024;8:1-7. DOI: https://doi.org/10.25081/jmb.2024.v8.8918.
  53. Fukui K, Hayashi KI. Manipulation and Sensing of Auxin Metabolism, Transport and Signaling. Plant Cell Physiol. 2018 Aug 1;59(8):1500-1510. doi: 10.1093/pcp/pcy076. PMID: 29668988.
  54. Ma Q, Grones P, Robert S. Auxin signaling: a big question to be addressed by small molecules. J Exp Bot. 2018 Jan 4;69(2):313-328. doi: 10.1093/jxb/erx375. PMID: 29237069; PMCID: PMC5853230.
  55. Casanova-Sáez R, Mateo-Bonmatí E, Ljung K. Auxin Metabolism in Plants. Cold Spring Harb Perspect Biol. 2021 Mar 1;13(3):a039867. doi: 10.1101/cshperspect.a039867. PMID: 33431579; PMCID: PMC7919392.
  56. Hayashi KI. Chemical Biology in Auxin Research. Cold Spring Harb Perspect Biol. 2021 May 3;13(5):a040105. doi: 10.1101/cshperspect.a040105. PMID: 33431581; PMCID: PMC8091948.
  57. Hwang I, Sheen J, Müller B. Cytokinin signaling networks. Annu Rev Plant Biol. 2012;63:353-80. doi: 10.1146/annurev-arplant-042811-105503. PMID: 22554243.
  58. Sakakibara H. Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol. 2006;57:431-49. doi: 10.1146/annurev.arplant.57.032905.105231. PMID: 16669769.
  59. Kieber JJ, Schaller GE. Cytokinin signaling in plant development. Development. 2018 Feb 27;145(4):dev149344. doi: 10.1242/dev.149344. PMID: 29487105.
  60. Blázquez MA, Nelson DC, Weijers D. Evolution of Plant Hormone Response Pathways. Annu Rev Plant Biol. 2020 Apr 29;71:327-353. doi: 10.1146/annurev-arplant-050718-100309. Epub 2020 Feb 4. PMID: 32017604.
  61. Fàbregas N, Alisdair R, Fernie AR. The interface of central metabolism with hormone signaling in plants. Curr Biol. 2021;31(23). DOI: https://doi.org/10.1016/j.cub.2021.09.070.
  62. Müller K, Dobrev PI, Pěnčík A, Hošek P, Vondráková Z, Filepová R, Malínská K, Brunoni F, Helusová L, Moravec T, Retzer K, Harant K, Novák O, Hoyerová K, Petrášek J. Dioxygenase for auxin oxidation 1 catalyzes the oxidation of IAA amino acid conjugates. Plant Physiol. 2021;187(1):103-115. DOI: 10.1093/plphys/kiab242.
  63. Zhang J., Peer W. A. Auxin homeostasis: the DAO of catabolism. Journal of Experimental Botany. 2017. 68(12): 3145–3154. URL: https://doi.org/10.1093/jxb/erx221
  64. Mellor N, Band LR, Pěnčík A, Novák O, Rashed A, Holman T, Wilson MH, Voß U, Bishopp A, King JR, Ljung K, Bennett MJ, Owen MR. Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis. Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):11022-7. doi: 10.1073/pnas.1604458113. Epub 2016 Sep 20. PMID: 27651495; PMCID: PMC5047161.
  65. Hayashi Ki., Arai K., Aoi Y. et al.The main oxidative inactivation pathway of the plant hormone auxin. Nat Commun. 2021.12: URL: https://doi.org/10.1038/s41467-021-27020-1
  66. Khablak SH, Spivak SI, Pastukhova NL, Yemets AI, Blume YaB. Cytokinin Oxidase/Dehydrogenase as an Important Target for Increasing Plant Productivity. Cytol Genet. 2024;58(2):115-125. DOI: 10.3103/S0095452724020051.

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?