Antagonistic features displayed by Plant Growth Promoting Rhizobacteria (PGPR): A Review

Main Article Content

Mohsin Tariq*
Muhammad Noman
Temoor Ahmed
Amir Hameed
Natasha Manzoor
Marriam Zafar

Abstract

Soil dwelling bacteria able to colonize plant roots and closely associated soil are referred to as rhizobacteria. A wide range of rhizobacteria has the ability to promote plant growth directly by producing phytohormone and nutrients; and indirectly by controlling plant pathogen. These beneficial bacteria are known as plant growth promoting rhizobacteria (PGPR). PGPR control phytopathogens by producing chemicals that could damage pathogen cells, removing pathogen specific nutrients from the environment, or inducing resistance against pathogen in plant body. Antagonistic bacteria specifically damage pathogens by producing lytic enzymes, antibiotics and bacteriocins; and excluding pathogen from plant environment by siderophores oriented iron chelation. This review highlights the antagonistic feature of PGPR. Application of antagonistic bacteria as biopesticides is an attractive alternate of chemical pesticides. Chemical pesticides are non-targeted and cause pollution during its synthesis as well as at the site of application. Antagonistic bacteria could be used as biopesticides and biofertilizers for better plant health and growth improvement.

Article Details

Mohsin Tariq, M., Noman, M., Ahmed, T., Hameed, A., Manzoor, N., & Zafar, M. (2017). Antagonistic features displayed by Plant Growth Promoting Rhizobacteria (PGPR): A Review. Journal of Plant Science and Phytopathology, 1(1), 038–043. https://doi.org/10.29328/journal.jpsp.1001004
Mini Reviews

Copyright (c) 2017 Tariq M, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Journal of Plant Science and Phytopathology is committed in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. In order to use the Open Access paradigm to the maximum extent in true terms as free of charge online access along with usage right, we grant usage rights through the use of specific Creative Commons license.

License: Copyright © 2017 - 2025 | Creative Commons License Open Access by Journal of Plant Science and Phytopathology is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at Heighten Science Publications Inc.

With this license, the authors are allowed that after publishing with the journal, they can share their research by posting a free draft copy of their article to any repository or website.

Compliance 'CC BY' license helps in:

Permission to read and download
Permission to display in a repository
Permission to translate
Commercial uses of manuscript

'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.

Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license. 

Walker TS, Bais HP, Grotewold E, Vivanco JM. Root exudation and rhizosphere biology. Plant Physiol. 2003; 132: 44-51. Ref.: https://goo.gl/B7urwj

Beneduzi A, Ambrosini A, Passaglia LM. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol. 2012; 35: 1044-1051. Ref.: https://goo.gl/YgOLNL

Dobbelaere S, Vanderleyden J, Okon Y. Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev in Plant Sci. 2003; 22: 107-149. Ref.: https://goo.gl/SqyHVQ

Kloepper JW, Lifshitz R, Zablotowicz RM. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 1989; 7: 39-44. Ref.: https://goo.gl/3RwbZu

Tariq M, Hameed S, Khan HU, Munir MI, Nushin F, et al. Role of microsymbionts in plant microbe symbiosis. J Appl Microbiol Biochem. 1989; 2: 1.

Babalola OO. Beneficial bacteria of agricultural importance. Biotechnol Lett. 2010; 32: 1559-1570. Ref.: https://goo.gl/3IkL9V

Gray E, Smith D. Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem. 2005; 37: 395-412. Ref.: https://goo.gl/MZTy6q

Hayat R, Ali S, Amara U, Khalid R, Ahmed I. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann of Microbiol. 2010; 60: 579-598. Ref.: https://goo.gl/OrOKqH

Singh SR, Joshi D, Singh P, Srivastava TK, Tripathi N. Plant growth-promoting bacteria: an emerging tool for sustainable crop production under salt stress, in bioremediation of salt affected soils. An Indian Perspective. 2017; 101-131. Ref.: https://goo.gl/v79LxJ

Ahemad M, Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci. 2014; 26: 1-20. Ref.: https://goo.gl/4xLO6A

Anith KN, Momol MT, Kloepper JW, Marois JJ, Olson SM, et al. Efficacy of plant growth-promoting rhizobacteria, acibenzolar-S-methyl, and soil amendment for integrated management of bacterial wilt on tomato. Plant Dis. 2004; 88: 669-673. Ref.: https://goo.gl/2CD2WT

Paul D, Kumar A, Anandaraj M, Sarma YR. Studies on the suppressive action of fluorescent Pseudomonas on Phytophthora capsici, the foot rot pathogen of black pepper. Indian Phytopathol. 2001; 54: 515.

Tariq M, Hameed S, Yasmeen T, Zahid M, Zafar M. Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World J Microbiol Biotechnol. 2014; 30: 719-725. Ref.: https://goo.gl/j9VV7V

Gupta A, Gupta R, Singh RL. Microbes and environment, in principles and applications of environmental biotechnology for a sustainable future. 2016; 43-84. Ref.: https://goo.gl/93bv1t

Ahmad F, Ahmad I, Khan M. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res. 2008; 163: 173-181. Ref.: https://goo.gl/5ZclSl

Saharan B, Nehra V. Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res. 2011; 21: 30. Ref.: https://goo.gl/xRS2E0

Cattelan AJ, Hartel PG, Fuhrmann JJ. Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci Socie Amer J. 1999; 63: 1670-1680. Ref.: https://goo.gl/sxEkV5

Kevin Vessey J. Plant growth promoting rhizobacteria as biofertilizers. Plant and soil. 2003; 255: 571-586. Ref.: https://goo.gl/vcpFdj

Paoletti MG, Pimentel D. Environmental risks of pesticides versus genetic engineering for agricultural pest Control. J Agric Environ Ethics. 2000; 12: 279-303. Ref.: https://goo.gl/vtBij1

Gilden RC, Huffling K, Sattler B. Pesticides and Health Risks. J Obstet Gynecol Neonatal Nurs. 2010; 39: 103-110. Ref.: https://goo.gl/gxvUAl

Thakore Y. The biopesticide market for global agricultural use. Ind Biotechnol. 2006; 2: 194-208. Ref.: https://goo.gl/o4OS7x

Sudakin DL. Biopesticides. Toxicol Rev. 2003; 22: 83-90. Ref.: https://goo.gl/yuWoIE

Jing YD, He ZL, Yang XE. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B. 2007; 8: 192-207. Ref.: https://goo.gl/H91eSp

Tariq M, Yasmin S, Hafeez FY. Biological Control of Potato Black Scurf by Rhizosphere Associated Bacteria. Braz J Microbiol. 2010; 41: 439-451. Ref.: https://goo.gl/t7hSpg

Berg G. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl microbiol biotechnol. 2009; 84: 11-18. Ref.: https://goo.gl/cCbjJ1

Soylu S, Soylu EM, Kurt S, Ekici OK. Antagonistic potentials of rhizosphere-associated bacterial isolates against soil-borne diseases of tomato and pepper caused by Sclerotinia sclerotiorum and Rhizoctonia solani. Pak J Biol Sci. 2005; 8: 43-48.

Andrews SC, Robinson AK, Quiñones FR. Bacterial iron homeostasis. FEMS Microbiol Rev. 2003; 27: 215-237. Ref.: https://goo.gl/iBFgPM

Boukhalfa H, Crumbliss AL. Chemical aspects of siderophore mediated iron transport. Biometals. 2002; 15: 325-339. Ref.: https://goo.gl/GnlFoz

Zhou D, Huang XF, Chaparro JM, Badri DV, Manter DK, et al. Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects. Plant Soil. 2016; 401: 259-272. Ref.: https://goo.gl/mDrVtr

Crosa JH, Walsh CT. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev. 2002; 66: 223-249. Ref.: https://goo.gl/km7s8x

Crowley DE. Microbial siderophores in the plant rhizosphere. In Iron nutrition in plants and rhizospheric microorganisms. 2006; 169-198. Ref.: https://goo.gl/JEEcHy

Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nature Rev Microbiol. 2010; 8: 15-25. Ref.: https://goo.gl/eJACWD

Masalha J, Kosegarten H, Elmaci O, Mengel K. The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils. 2000; 30: 433-439. Ref.: https://goo.gl/9qzc2O

Katiyar V, Goel R. Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regul. 2004; 42: 239-244. Ref.: https://goo.gl/pck86D

Haas D, Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Rev Microbiol. 2005; 3: 307-319. Ref.: https://goo.gl/v7AgPZ

Bharti P, Tewari R. Purification and structural characterization of a phthalate antibiotic from Burkholderia gladioli OR1 effective against multi-drug resistant Staphylococcus aureus. The J Microb Biotech Food Sci. 2015; 5: 207. Ref.: https://goo.gl/nM6fIU

Fernando WD, Nakkeeran S, Zhang Y. Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases, in PGPR: biocontrol and biofertilization. 2005; 67-109. Ref.: https://goo.gl/Be6Esz

Viveros OM, Jorquera MA, Crowley DE, Gajardo G, Mora ML. Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr. 2010; 10: 293-319. Ref.: https://goo.gl/0Iur11

de Souza JT, Arnould C, Deulvot C, Lemanceau P, Gianinazzi-Pearson V, et al. Effect of 2, 4-diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology. 2003; 93: 966-975. Ref.: https://goo.gl/W82qUA

Maksimov I, Abizgil Dina R, Pusenkova L. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl Biochem Microbiol. 2011; 47: 333-345. Ref.: https://goo.gl/whQnu3

Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, et al. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant-Microbe Interact. 2007; 20, 430-440. Ref.: https://goo.gl/eKBD0G

Riley MA, Wertz JE. Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol. 2002; 56: 117-137. Ref.: https://goo.gl/JIxy1C

Cascales E, Buchanan SK, Duche D, Kleanthous C, Lloubes R, et al. Colicin biology. Microbiol Mol Biol. 2007; 71: 158-229. Ref.: https://goo.gl/scomLV

Abriouel H, Franz CM, Omar NB, Galvez A. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev. 2011; 35: 201-232. Ref.: https://goo.gl/3i7QnL

Neeraja C, Anil K, Purushotham P, Suma K, Sarma P, et al. Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases. Crit Rev Biotechnol. 2010; 30: 231-241. Ref.: https://goo.gl/g4BLjp

Aeron A, Pandey P, Kumar S, Maheshwari DK. Emerging role of plant growth promoting rhizobacteria. D.K. Maheshwari (Ed.). Bacteria in agrobiology: crop ecosystem. 2001; 1-26. Ref.: https://goo.gl/YM5gKU

Kobayashi D, El-Barrad NH. Selection of bacterial antagonists using enrichment cultures for the control of summer patch disease in kentucky bluegrass. Curr Microbiol. 1996; 32: 106-110. Ref.: https://goo.gl/OLnI6K

Bull CT, Shetty KG, Subbarao KV. Interactions between Myxobacteria, plant pathogenic fungi, and biocontrol agents. Plant Dis. 2002; 86: 889-896. Ref.: https://goo.gl/Jrgfxw

Ordentlich A, Elad Y, Chet I. The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology. 1988; 78: 84-88. Ref.: https://goo.gl/16Jfk1

Palumbo JD, Yuen GY, Jochum CC, Tatum K, Kobayashi DY. Mutagenesis of Beta-1,3-Glucanase Genes in Lysobacter Enzymogenes Strain C3 Results in Reduced Biological Control Activity Toward Bipolaris Leaf Spot of Tall Fescue and Pythium Damping-Off of Sugar Beet. Phytopathol. 2005; 95: 701-707. Ref.: https://goo.gl/lpRnHe

Haran S, Schickler H, Chet I. Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiol. 1996; 142: 2321-2331. Ref.: https://goo.gl/QX3ZUz