Studies of Grafts in vegetables, an alternative for agricultural production under stress conditions: Physiological responses

Main Article Content

Jose Bernal Alzate
Edgar Omar Rueda Puente*
Onécimo Grimaldo Juárez
Daniel González Mendoza
Lourdes Cervantes Díaz
Alejandro García López

Abstract

Vegetable production by grafting is a technique which it has made possible to resume agricultural soils which previously could not be produced due to stress generated by various abiotic factors, like a lack of water, stress by high or low temperatures, and or heavy metal contamination, among them. It has been documented and defined a number of graftings which they are tolerant to different factors; however, when it comes to auscultating information related to understand the molecular responses and observe what are the biochemical changes and physiological responses of grafted plants, it is dispersed. The current paper attempts to provide basic information documented on technique, addressing the molecular, biochemical and physiological responses, and thus get a clear perspective on the use of grafts, making this practice be used with most frequently by all its advantages.

Article Details

Alzate, J. B., Rueda Puente, E. O., Juárez, O. G., Mendoza, D. G., Díaz, L. C., & López, A. G. (2018). Studies of Grafts in vegetables, an alternative for agricultural production under stress conditions: Physiological responses. Journal of Plant Science and Phytopathology, 2(1), 006–014. https://doi.org/10.29328/journal.jpsp.1001014
Retrospective Studies

Copyright (c) 2018 Alzate JB, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Journal of Plant Science and Phytopathology is committed in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. In order to use the Open Access paradigm to the maximum extent in true terms as free of charge online access along with usage right, we grant usage rights through the use of specific Creative Commons license.

License: Copyright © 2017 - 2025 | Creative Commons License Open Access by Journal of Plant Science and Phytopathology is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at Heighten Science Publications Inc.

With this license, the authors are allowed that after publishing with the journal, they can share their research by posting a free draft copy of their article to any repository or website.

Compliance 'CC BY' license helps in:

Permission to read and download
Permission to display in a repository
Permission to translate
Commercial uses of manuscript

'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.

Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license. 

Lockard RG. Effect of Apple Rootstocks and Length and Type of Interstock on Leaf Nutrient Levels. J Hortic Sci. 1976; 51: 289-296. Ref.: https://goo.gl/kuE7q5

Tateishi K. Grafting watermelon onto pumpkin. J Japanese Horticulture (Nihon‐Engei Zasshi). 1927; 39: 5‐8. Ref.: https://goo.gl/jKnxRD

Lee JM, Kubota C, Tsao SJ, Bie Z, Hoyos-Echeverria P, et al. Current status of vegetable grafting: Difussion, grafting techniques, automation. Scientia Horticulturae. 2010; 127: 93-105. Ref.: https://goo.gl/P93mPv

OCDE/FAO (2013), OCDE-FAO Perspectivas Agrícolas 2013-2022, Texcoco, Estado de México, Universidad Autónoma Chapingo.

Louws FJ, Rivard CL, Kubota C. Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Sci Hortic. 2010; 127: 127-146. Ref.: https://goo.gl/DvV4gA

Luna-Flores W, Estrada-Medina H, Jiménez-Osornio JJM, Pinzón-López LL. Efecto del estrés hídrico sobre el crecimiento y eficiencia del uso del agua en plántulas de tres especies arbóreas caducifolias. Terra Latinoamericana. 2012; 30: 343-353. Ref.: https://goo.gl/QeE3su

Moreno L. Respuesta de las plantas al estrés por déficit hídrico. Una revisión. Agronomía colombiana. 2009; 27: 179-191. Ref.: https://goo.gl/F1Zt4t

Penella C, Landi M, Guidi L, Nebauer S, Pellegrini E, et al. Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetich performance and sinks strength. J plant Physiology. 2016; 193: 1-11. Ref.: https://goo.gl/MEhCMF

Sánchez-Rodríguez E, Rubio-Wilhelmi M, Blasco B, Leyva R, Romero L, et al. Antioxidant response resides in the shoot in reciprocal grafts of drought-tolerant and drought-sensitive cultivars in tomato under wáter stress. Plant Science. 2012; 189: 89-96. Ref: https://goo.gl/AViWS9

Kubota C, Mc Clure M, Kokalis-Burelle N, Bausher M, Rosskopf E. Vegetable grafting: History, use and current technology status in North America. HortScience. 2008; 6: 1664-1669. Ref.: https://goo.gl/ytevSe

Bletsos F, Thanassoulopoulos C, Roupakias D. Effect of grafting on growth, yield, and verticillium wilt of eggplant. HortScience. 2003; 2: 183-186. Ref.: https://goo.gl/5PMJiF

Rivard C, O’Connell S, Peet M, Louws F. Grafting tomato with interspecific Rootstok to manage diseases caused by Sclerotium rolfscii and southern root-knot nematode. Plant disease. 2010; 8: 1015-1021. Ref.: https://goo.gl/JyVCfw

Rivard C, O’Connell S, Peet M, Welker R, Louws F. Grafting tomato to manage bacteril wolt causaed by Ralstonia solanacearum in the southeastern United States. Plant disease. 2012; 7: 973-978.

Keinath A, Haseell R. Control of fusarium wilt of watermelon by grafting onyo bottlegourd of interspecific hybrid squash despite colonization of grafts by Fusarium. Plants disease. 2014; 2: 255-266. Ref.: https://goo.gl/TVJYcX

Kleinhenz MD. Major Factors in Preparing Grafted Vegetable Plants Successfully. The Ohio State Univ., Ohio Agricultural Res. Dev. Ctr. 2011.

Ozores-Hampton M. Healing chamber for grafted vegetables seedlings in Florida. University of Florida IFAS. 2013.

Dawson R. Acumulation of nicotine in reciprocal grafts of tomato and tobacco. American Journal of botany. 1942; 29: 66-71. Ref.: https://goo.gl/byZMhm

Khah E, Kakava E, Mavromatis A, Chachalis D, Goulas C. Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open field. Journal of Applied Horticulture. 2006; 8: 3-7. Ref.: https://goo.gl/tTkw3L

Alan Ö, Özdemir N, Günen Y. Effect of grafting on watermelon plant growth, yield and quality. Journal of Agronomy. 2007; 2: 362-365. Ref.: https://goo.gl/bxbwcX

Mohamed F, El-Hamed K, Elwhan M, Hussien M. Impact of grafting on watermelon growth, fruit yield and quality. Vegetable Research Bulletin. 2012; 76: 99-118. Ref.: https://goo.gl/of3LLz

Savvas D, Colla G, Rouphael Y, Schwarz D. Ameloration of heavy metal and nutriwent stress in fruit vegetables by grafting. Scientia Horticulturae. 2010; 2: 156-161. Ref.: https://goo.gl/q3PcNM

Di Gioia F, Signore A. Grafting improves tomato salinity tolerance through sodium partitioning within the shoot. HortScience. 2013; 7: 855-862. Ref.: https://goo.gl/dmX6YM

Sánchez-Rodríguez E, Romero L, Ruiz JM. Role of grafting in resistance to water stress in tomato plants: ammonia production and assimilation. J Plant Growth Regul. 2013; 32: 831-842. Ref.: https://goo.gl/fUHyJz

Savvas D, Ntatsi G, Barouchas P. Impact of grafting and rootstock genotype on cation uptake by cucumber (Cucumis sativus L.) exposed to Cd of Ni stress. Scientia Horticulturae. 2013; 149: 86-96. Ref.: https://goo.gl/7XBwkZ

Chaves M, Maroco J, Pereira. Understanding plant responses to drought -from genes to the whole plant. Funct Plant Biol. 2003; 30: 239-264. Ref.: https://goo.gl/Umca4W

Blum A. Drought resistance, water use-efficiency, and yield potential -are they compatible, dissonant or mutual exclusive? Austr J Agric Res. 2005; 56: 1159-1168. Ref.: https://goo.gl/zkxDLQ

Bernal-Alzate J, Grimaldo-Juarez O, González-Mendoza D, Cervantes-Díaz L, Rueda-Puente E, et al. El injerto como alternativa para mejorar el rendimiento en la producción de frijol ejotero (Phaseolus vulgaris L.). IDESIA. 2016; 2: 43-46. Ref.: https://goo.gl/pZWyko

Proebsting W, Hedden P, Lewis M, Croker S, Proebsting L. Gibberellin concentration and transport in genetic lines of pea. Plant Physiol. 1992; 100: 1354-1360. Ref.: https://goo.gl/TSzCDg

Bulley S, Wilson F, Hedden P, Phillips A, Crokerm S, et al. Modification of gibberellin biosiynthesis in the grafted apple scion allows control of tree height independent of the rootstock. Plant Biotechnology Journal. 2005; 3: 215-223. Ref.: https://goo.gl/w2HBW6

Kudo H, Harada T. A graft-transmissible RNA from Tomato Rootstock changes leaf morphology of potato scion. Hortscience. 2007; 2: 225-226. Ref.: https://goo.gl/in7stW

Ohata Y. Graft-transformation, the mechanism for graft-induced genetic changes in higher plants. Euphytica. 1991; 55: 91-99. Ref.: https://goo.gl/Bi1J6J

Taller J, Yagishita N, Hirata Y. Graft-induced variants as a source of novel characteristics in the breeding pepper (Capsicum annuum L.). Euphytica. 1999; 108: 73-78. Ref.: https://goo.gl/X2P66N

Hooijdonk B, Woolley D, Warrington I, Tustin S. Roostocks modify scion architecture, endogenous hormones and root growth of newly grafted ‘royal gala’ apple trees. J. Amer. Soc. Hort. Sci. 2011; 136: 93-102. Ref.: https://goo.gl/Kobncn

Sandalio L, Dalurzo H, Gimez M, Romero-Puertas M, Rio L. Cadmium-induced changes in growth and oxidative metabolism of pea plants, J. Exp. Bot. 2001; 52: 1297-1303. Ref.: https://goo.gl/ETwErt

Saied A, Keutgen N, Noga G. Effects of NaCl stress on leaf growth, photosynthesis and ionic contents of strawberry cvs ‘Elsanta´and ‘Korona’. In: pardossi, A., Serra, G., F. (Eds.). International symposium on managing greenhouse crops in saline environment, International society of Horticultural Science. Pisa: 2003; 67-73.

Chaves M, Flexas J, Pinhero C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of botany. 2009; 103: 551-560. Ref.: https://goo.gl/MHXnwi

Yuang Y, Yu L, Wang L, Guo S. Bottle gourd grafts-grafting promotes photosynthesis by regulating the stomata and non-stomata performances in leaves of watermelon seedlings under NaCl stress. Journal pf plant Physiology. 2015; 187: 50-58. Ref.: https://goo.gl/6KFERD

Rouphael Y, Cardarelli M, Rea E, Colla G. Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid grafts. Photosyntheetica. 2009; 50: 180-188. Ref.: https://goo.gl/afym6X

Aghaleh M, Niknam V, Ebrahimzadeh H, Razavi K. Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea Biol Plant. 2009; 53: 243-248. Ref.: https://goo.gl/p3KztJ

Liu Z, Bie Z, Huang Y, Zhen A, Lei B, et al. Grafting onto Cucurbita moschata roostock alleviates salt stress in cucumber plants by delaying photoinhibition. Photosybthetica. 2012; 50: 152-160. Ref.: https://goo.gl/hxJ8WV

Amaro A, Macedo A, Pereira A, Goto R, Ono E, et al. The use of graftinf to improve the net photosynthesis of cucumber. Theor exp. Plant Physiol. 2014; 26: 241-249. Ref.: https://goo.gl/3jQsrU

Liu Y, Qi Y, Bai M, Qi F, Xu Q, et al. Grafting Helps Improve Photosynthesis and Carbohydrate Metabolism in Leaves of Muskmelon. Int J Biol Sci. 2011; 7: 1161-1170. Ref.: https://goo.gl/B7eyp9

Qi Y, Li L, Liu F, Li D. Effects of grafting on photosynthesis characteristics, yield and sugar content in melon. J Shenyang Agr Univ. 2006; 37: 155-158. Ref.: https://goo.gl/zSShUJ

Gonzalez C, Llosa J, Quijano A, Forner A. Roostock effects on leaf Photosynthesis in “Navelina” Trees grown in calcareous soil. HortScience. 2009; 44: 280-283. Ref.: https://goo.gl/Rmt6vh

Qinghai G, Wu Y, Jia S, Huang S, Lu X. Effect of rootstock on the growth, photosynthetic capacity And osmotic adjustment of eggplant seedlings under Chilling stress and recovery. Pak. J. Bot. 2016; 48: 461-467. Ref.: https://goo.gl/83WUxQ

Jianlin W Y, Guirui F, Quanxiao J, Defeng Q, Hua W, et al. Responses of water use efficiency of 9 plant species to light and CO2 and their modeling. Acta Ecol. 2008; 28: 525-533. Ref.: https://goo.gl/9n9C6y

Aloni B, Karni L, Deventurero G, Levin Z, Cohen R, et al. Physiological and biochemical changes at the grafts-scion interface in graft combinations between Cucurbita grafts and a melon scion. J. Hortic. Sci. Biotechnol. Ref.: 2008; 83: 777-783. Ref.: https://goo.gl/wJypQy

Irisarri P, Binczycki P, Errea P, Martens H J, Pina A. Oxidative stress associated with rootstockescion interactions in pear/quince combinations during early stages of graft development. J. Plant Physiol. 2015; 176: 25-35. Ref.: https://goo.gl/TsNPHy

Xu Q, GHuo S, Li L, An Y, Shu S, et al. Proteomics analysis of compatibility and incompatibility in grafted cucumber seedlings. Plants physiology and biochemistry. 2016; 105: 21-28. Ref.: https://goo.gl/2fQgwD

Desimone M, Henke A, Wagner E. Oxidative stress induces partial degradation of the large subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase in isolated chloroplasts of barley. Plant Physiol. 1996; 111: 789-796. Ref.: https://goo.gl/FFLcfD

Liao L, Cao S, Rong Y, Wang Z. Effects of grafting on key photosynthetic enzymes and gene expression in the citrus cultivar Huangguogan. Genetics and molecular research. 2016; 15: 1-10. Ref.: https://goo.gl/KrVQZy

Morinaga K, Ikeda F. The effects of several grafts on photosynthesis; distribution of photosynthetic product, and growth of young satsuma mandarin trees. J. Japan. Soc. Hort. Sci.1990; 59: 29-34. Ref.: https://goo.gl/4XuGDj

Buchanan B, W Gruissem, Jones R. Biochemistry and molecular biology of plants. American Society of Plant Biologists, John Wiley & Sons, Inc. Somerset NJ. 2000. Ref.: https://goo.gl/T5fodG

Crété P, Leuenberger S, V A Iglesias, V Suarez, H Schob, et al. Graft transmission of induced and spontaneous post-transcriptional silencing of chitinase genes. Plant J. 2001; 28: 493-501. Ref.: https://goo.gl/3A6J2c

Palauqui J C, Elmayan T, Pollien J M, Vaucheret H. Systemic acquired silencing: transgene-specific posttranscriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 1997; 15: 4738-4745. Ref.: https://goo.gl/wqbsJX

Shaharuddin N, Han Y, Li H, Grierson D. The mechanism of graft transmission of sense and antisense gene silencing in tomato plants. FEBS letters. 2006; 580: 6579-6586. Ref.: https://goo.gl/vhkY9f

Wang S, Liu Z, Sun C, Shi Q, Yao Y, et al. Functional characterization of the apple MhGAI1 gene through ectopic expression and grafting experiments in tomatoes. Journal of plant physiology. 2012; 169: 303-310. Ref.: https://goo.gl/KQ9GDb

Ntatsi G, Savvas D, Huntenburg K, Druege U, Hincha D, et al. A study on ABA involvement in the response of tomato suboptimal temperatura using reciprocal grafts with notabilis, a null mutant in the ABA-biosynthesis gene LeNCED. Enviromental and Experimental Botany. 2014; 97: 11-21.

Jiménez S, Dridi J, Gutiérrez D, Moret D, Irigoyen J, et al. Physiological, biochemical and molecular responses of four prunus grafts submitted to drought stress. Tree physiology. 2013; 33: 1061-1075. Ref.: https://goo.gl/tWefsZ

Miao B, Wen-ting C, Bing-yan X, Guo-shun Y. A novel strategy to enhance resistance to Cucumber mosaic virus in tomato by grafting to transgenic grafts. Journal of integrative agriculture. 2016; 15: 2040-2048. Ref.: https://goo.gl/JdXz4H

Bletsos F, Olympios C. Grafts and grafting of tomatoes, peppers and eggplants for soil-borne disease resistance, improved yield and quality. The European journal of plant science and biotechnology. 2008; 2: 62-73.

Spoustová P, Hýsková V, Müller K, Schnablová R, Ryslavá H, et al. Tobacco susceptibility to Potato virus YNTN infection is affected bygrafting and endogenous cytokinin content. Plant Science. 2015; 235: 25-36. Ref.: https://goo.gl/omxqFf

Vitale A, Rocco M, Arena S, Giuffrida F, Cassanitu C, et al. Tomato susceptibility to Fusarium crown and root rot: Effect of grafting combination and proteomic analysis of tolerance expression in the rootstock. Plant Physiology and biochemistry. 2014; 83: 207- 216. Ref.: https://goo.gl/bsqrtA

Sánchez-Rodríguez, E Ruiz, J Ferreres, F Moreno, D. Phenolic profiles of cherry tomatoes as influenced by hydric stress and rootstock technique. Food chemistry. 2012; 134: 775-782. Ref.: https://goo.gl/Smx5up

Jiang F, Y X Liu, W Liu, N Zheng, H T Wang, et al. Relationship between root rot resistance and phenylaprapanoid metabolism in graft capsicum. China Veg. 2010; 8: 46-52. Ref.: https://goo.gl/Bxw8Lt

Zhou B, Gao Y, Lin G, Fu Y. Relationship between disease resistance and electrolytic leakage, proline content and PAL activity in grafted eggplant (in Chinese). Acta Hort Sinica 1998; 25: 300-302. Ref.: https://goo.gl/6m8eCs

Edelstein M, Cohen R, Burger Y, Shriber S, Pivonia S, et al. Integrated management of sudden wilt of melons, caused by Monosporascus cannonballus, using grafting and reduced rate of methyl bromide. Plant Dis. 1999; 83: 1142-1145. Ref.: https://goo.gl/XPx9Rn

Franks. P, Casson S. Connecting stomatal development and physiology. New Phytol. 2014; 201: 1079-1082. Ref.: https://goo.gl/Btu4ir

Jones H. Plants and microclimate: a Quantitative Approach to Environmental. Plant physiology, 3ra Edicion. Cambridge University Press London. 2014. Ref.: https://goo.gl/E5mZNs

Rivard C, Sydorovych O, O’Connell S, Peet M, Louws F. An economic analysis of two grafted tomato transplant production systems in the United States. Horttechnology. 2010; 4: 794-803. Ref.: https://goo.gl/vdwYLf