Role of HECT ubiquitin protein ligases in Arabidopsis thaliana

Main Article Content

Wei Lan
Weibo Ma
Ying Miao*

Abstract

Ubiquitination is a kind of posttranslational modification of proteins in eukaryotes, and it plays an important role in the growth and development of organisms. The ubiquitination of proteins is a cascade enzymatic reaction involving three enzymes. The homologous to E6-AP carboxy terminus ubiquitin-protein ligases (HECT E3s) family is an important ubiquitin-protein ligases family. The family all have a HECT domain of approximately 350 amino acids in the C-terminus. However, studies on plant HECT E3s, such as structural features, prediction of HECT domain function, and their regulatory mechanisms, are very limited. In this paper, Arabidopsis thaliana HECT family genes were analyzed, including gene structure and functional domains and its limited known functions in protein degradation, gene transcription regulation, epigenetically regulation or other functions, finally speculate their roles in plant morphologies, aging or responsive to environmental stress.

Article Details

Lan, W., Ma, W., & Miao, Y. (2018). Role of HECT ubiquitin protein ligases in Arabidopsis thaliana. Journal of Plant Science and Phytopathology, 2(1), 020–030. https://doi.org/10.29328/journal.jpsp.1001016
Review Articles

Copyright (c) 2018 Lan W, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Journal of Plant Science and Phytopathology is committed in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. In order to use the Open Access paradigm to the maximum extent in true terms as free of charge online access along with usage right, we grant usage rights through the use of specific Creative Commons license.

License: Copyright © 2017 - 2025 | Creative Commons License Open Access by Journal of Plant Science and Phytopathology is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at Heighten Science Publications Inc.

With this license, the authors are allowed that after publishing with the journal, they can share their research by posting a free draft copy of their article to any repository or website.

Compliance 'CC BY' license helps in:

Permission to read and download
Permission to display in a repository
Permission to translate
Commercial uses of manuscript

'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.

Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license. 

Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature. 2003; 426: 895-899. Ref.: https://goo.gl/v2K12U

Luo H, Wong J, Wong B. Protein degradation systems in viral myocarditis leading to dilated cardiomyopathy. Cardiovasc Res. 2010; 85: 347-356. Ref.: https://goo.gl/WCVSpv

Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011; 469: 323-335. Ref.: https://goo.gl/4t9rKm

Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta. 2004; 1695: 55-72. Ref.: https://goo.gl/iyJYyF

Luzio JP, Pryor PR, Bright NA. Lysosomes: fusion and function. Nat Rev Mol Cell Biol.2007; 8: 622-632. Ref.: https://goo.gl/4XEDgR

Husnjak K, Dikic I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem. 2012; 81: 291-322. Ref.: https://goo.gl/qB7d7Z

Kerscher O, Felberbaum R, Hochstrasser M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol. 2006; 22: 159-180. Ref.: https://goo.gl/YJL8Hc

Rotin D, Kumar S. Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol. 2009; 10: 398-409. Ref.: https://goo.gl/eGyxs1

Smalle J, Vierstra RD. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol. 2004; 55: 555-590. Ref.: https://goo.gl/VNxcZu

Vierstra RD. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci. 2003; 8: 135-142. Ref.: https://goo.gl/vh46mo

Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002; 82: 373-428. Ref.: https://goo.gl/bsGuJv

Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998; 67: 425-479. Ref.: https://goo.gl/Fb5bzy

Scheffner M, Nuber U, Huibregtse JM. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature. 1995; 373: 81-83. Ref.: https://goo.gl/7Zxck4

Wang M, Cheng D, Peng J, Pickart CM. Molecular determinants of polyubiquitin linkage selection by an HECT ubiquitin ligase. EMBO J. 2006; 25: 1710-1719. Ref.: https://goo.gl/5bpDRk

Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, et al. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol. 2003; 21: 921-926. Ref.: https://goo.gl/8reR9z

Kulathu Y, Komander D. Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol. 2012; 13: 508-523. Ref.: https://goo.gl/MGUz25

Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science. 2007; 315: 201-205. Ref.: https://goo.gl/GuWbds

Thrower JS, Hoffman L, Rechsteiner M, Pickart CM. Recognition of the polyubiquitin proteolytic signal. EMBO J. 2000; 19: 94-102. Ref.: https://goo.gl/L1bFNc

Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell. 2009; 137: 133-145. Ref.: https://goo.gl/rCkV7b

Metzger MB, Hristova VA, Weissman AM. HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci. 2012; 125: 531-537. Ref.: https://goo.gl/AjcYM8

Varshavsky A. The ubiquitin system, an immense realm. Annu Rev Biochem.2012; 81: 167-176. Ref.: https://goo.gl/Kj5VeD

Schwartz AL, Ciechanover A. Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol.2009; 49: 73-96. Ref.: https://goo.gl/8U8nG2

Mazzucotelli E, Belloni S, Marone D, De Leonardis A, Guerra D, et al. The e3 ubiquitin ligase gene family in plants: regulation by degradation. Curr Genomics. 2006; 7: 509-522. Ref.: https://goo.gl/gvgc9c

Chen L, Hellmann H. Plant E3 ligases: flexible enzymes in a sessile world. Mol Plant. 2013; 6: 1388-1404. Ref.: https://goo.gl/BSNDzM

Hotton SK, Callis J. Regulation of cullin RING ligases. Annu Rev Plant Biol.2008; 59: 467-489. Ref.: https://goo.gl/1fcvky

Schwechheimer C, Calderon Villalobos LI. Cullin-containing E3 ubiquitin ligases in plant development. Curr Opin Plant Biol. 2004; 7: 677-686. Ref.: https://goo.gl/2UueSJ

Smalle J, Vierstra RD. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol.2004; 55: 555-590. Ref.: https://goo.gl/gfTEC4

Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, et al. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PloS One. 2008; 3: e1487. Ref.: https://goo.gl/zTqDRL

Scheffner M, Staub O. HECT E3s and human disease. BMC Biochemistry. 2007; 8: S6. Ref.: https://goo.gl/6uucSJ

Wang D, Ma L, Wang B, Liu J, Wei W. E3 ubiquitin ligases in cancer and implications for therapies. Cancer Metastasis Rev. 2017; 36: 683-702. Ref.: https://goo.gl/yPLu6T

Lee JH, Kim WT. Regulation of abiotic stress signal transduction by E3 ubiquitin ligases in Arabidopsis. Mol Cells.2011; 31: 201-208. Ref.: https://goo.gl/Ta4tBZ

Marino D, Froidure S, Canonne J, Ben Khaled S, Khafif M, et al. Arabidopsis ubiquitin ligase MIEL1 mediates degradation of the transcription factor MYB30 weakening plant defence. Nat Commun. 2013; 4: 1476. Ref.: https://goo.gl/4SBZw5

Yee D, Goring DR. The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. J Exp Bot. 2009; 60: 1109-1121. Ref.: https://goo.gl/FcRFRg

Marin I. Evolution of plant HECT ubiquitin ligases. PloS one. 2013; 8: 68536. Ref.: https://goo.gl/Zv4Sn7

https://goo.gl/1vfTxG

Mund T, Lewis MJ, Maslen S, Pelham HR. Peptide and small molecule inhibitors of HECT-type ubiquitin ligases. Proceedings of the National Academy of Sciences of the United States of America. 2014; 111: 16736-16741. Ref.: https://goo.gl/vonLFC

Opperman KJ, Mulcahy B, Giles AC, Risley MG, Birnbaum RL, et al. The HECT Family Ubiquitin Ligase EEL-1 Regulates Neuronal Function and Development. Cell reports. 2017; 19: 822-835. Ref.: https://goo.gl/jCVGid

Kim HC, Steffen AM, Oldham ML, Chen J, Huibregtse JM. Structure and function of a HECT domain ubiquitin-binding site. EMBO reports. 2011; 12: 334-341. Ref.: https://goo.gl/zWr4Eo

Maspero E, Valentini E, Mari S, Cecatiello V, Soffientini P, et al. Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming. Nature structural & molecular biology. 2013; 20: 696-701. Ref.: https://goo.gl/sgae9H

Downes BP, Stupar RM, Gingerich DJ, Vierstra RD. The HECT ubiquitin-protein ligase (UPL) family in Arabidopsis: UPL3 has a specific role in trichome development. The Plant journal : for cell and molecular biology. 2003; 35: 729-742. Ref.: https://goo.gl/vS6oj8

Verdecia MA, Joazeiro CA, Wells NJ, Ferrer JL, Bowman ME, et al. Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Molecular cell. 2003; 11: 249-259. Ref.: https://goo.gl/5zUPkq

Huang L, Kinnucan E, Wang G, Beaudenon S, Howley PM, et al. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science. 1999; 286: 1321-1326. Ref.: https://goo.gl/ncU7C7

Grau-Bove X, Sebe-Pedros A, Ruiz-Trillo I. A genomic survey of HECT ubiquitin ligases in eukaryotes reveals independent expansions of the HECT system in several lineages. Genome biology and evolution. 2013; 5: 833-847. Ref.: https://goo.gl/z1um7e

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research. 1997; 25: 3389-3402. Ref.: https://goo.gl/Pa9As4

Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular biology and evolution. 2016; 33: 1870-1874. Ref.: https://goo.gl/gk7sRb

Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics (Oxford, England). 2015; 31: 1296-1297. Ref.: https://goo.gl/KpnLFf

Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, et al. Pfam: the protein families database. Nucleic acids research. 2014; 42: 222-230.

Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S, et al. The InterPro protein families database: the classification resource after 15 years. Nucleic acids research. 2015; 43: 213-221. Ref.: https://goo.gl/VCqgcq

Hofmann K, Bucher P. The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends in biochemical sciences. 1996; 21: 172-173. Ref.: https://goo.gl/yk8qo9

Hofmann K, Falquet L. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends in biochemical sciences. 2001; 26: 347-350. Ref.: https://goo.gl/GDPMaQ

El Refy A, Perazza D, Zekraoui L, Valay JG, Bechtold N, et al. The Arabidopsis KAKTUS gene encodes a HECT protein and controls the number of endoreduplication cycles. Molecular genetics and genomics: MGG. 2003; 270: 403-414. Ref.: https://goo.gl/NGUBT6

Bates PW, Vierstra RD. UPL1 and 2, two 405 kDa ubiquitin-protein ligases from Arabidopsis thaliana related to the HECT-domain protein family. The Plant journal: for cell and molecular biology. 1999; 20: 183-195. Ref.: https://goo.gl/UhEDbe

Wang M, Pickart CM. Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis. The EMBO journal. 2005; 24: 4324-4333. Ref.: https://goo.gl/6xD8Lm

Galan JM, Haguenauer-Tsapis R. Ubiquitin lys63 is involved in ubiquitination of a yeast plasma membrane protein. The EMBO journal. 1997; 16: 5847-5854. Ref.: https://goo.gl/49euRF

Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science. 1989; 243: 1576-1583. Ref.: https://goo.gl/XgCpRj

Mani A, Oh AS, Bowden ET, Lahusen T, Lorick KL, et al. E6AP mediates regulated proteasomal degradation of the nuclear receptor coactivator amplified in breast cancer 1 in immortalized cells. Cancer research. 2006; 66: 8680-8686. Ref.: https://goo.gl/V7JLQ4

Finley D, Sadis S, Monia BP, Boucher P, Ecker DJ, et al. Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Molecular and cellular biology. 1994; 14: 5501-5509. Ref.: https://goo.gl/rKPdVb

Louria-Hayon I, Alsheich-Bartok O, Levav-Cohen Y, Silberman I, Berger M, et al. E6AP promotes the degradation of the PML tumor suppressor. Cell death and differentiation. 2009; 16: 1156-1166. Ref.: https://goo.gl/QXz1X3

Adhikary S, Marinoni F, Hock A, Hulleman E, Popov N, et al. The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell. 2005; 123: 409-421. Ref.: https://goo.gl/JxTvYL

Chen D, Kon N, Li M, Zhang W, Qin J, et al. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell. 2005; 121: 1071-1083. Ref.: https://goo.gl/6uRPyA

Zhong Q, Gao W, Du F, Wang X. Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell. 2005; 121: 1085-1095. Ref.: https://goo.gl/Jujmb4

Zhao X, Heng JI, Guardavaccaro D, Jiang R, Pagano M, et al. The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nature cell biology. 2008; 10: 643-653. Ref.: https://goo.gl/gepC9k

Patra B, Pattanaik S, Yuan L. Ubiquitin protein ligase 3 mediates the proteasomal degradation of GLABROUS 3 and ENHANCER OF GLABROUS 3, regulators of trichome development and flavonoid biosynthesis in Arabidopsis. The Plant journal : for cell and molecular biology. 2013; 74: 435-447. Ref.: https://goo.gl/R9pcC6

Miao Y, Zentgraf U. A HECT E3 ubiquitin ligase negatively regulates Arabidopsis leaf senescence through degradation of the transcription factor WRKY53. The Plant journal: for cell and molecular biology. 2010; 63: 179-188. Ref.: https://goo.gl/h3RnAN

Deng S, Jang IC, Su L, Xu J, Chua NH. JMJ24 targets CHROMOMETHYLASE3 for proteasomal degradation in Arabidopsis. Genes & development. 2016; 30: 251-256. Ref.: https://goo.gl/y8Ti6K

Zeng S, Wang Y, Zhang T, Bai L, Wang Y, et al. E3 ligase UHRF2 stabilizes the acetyltransferase TIP60 and regulates H3K9ac and H3K14ac via RING finger domain. Protein & cell. 2017; 8: 202-218. Ref.: https://goo.gl/cXXwDZ

Luo C, Cai X T, Du J, Zhao TL, Wang PF, et al. PARAQUAT TOLERANCE3 Is an E3 Ligase That Switches off Activated Oxidative Response by Targeting Histone-Modifying PROTEIN METHYLTRANSFERASE4b. PLoS genetics. 2016; 12: 1006332. Ref.: https://goo.gl/MSw78F

Licchesi JD, Mieszczanek J, Mevissen TE, Rutherford TJ, Akutsu M, et al. An ankyrin-repeat ubiquitin-binding domain determines TRABID's specificity for atypical ubiquitin chains. Nature structural & molecular biology. 2011; 19: 62-71. Ref.: https://goo.gl/ms7xPM

Michel MA, Elliott PR, Swatek KN, Simicek M, Pruneda JN, et al. Assembly and specific recognition of k29- and k33-linked polyubiquitin. Molecular cell. 2015; 58: 95-109. Ref.: https://goo.gl/9rhBzm

Jin J, Xie X, Xiao Y, Hu H, Zou Q, et al. Epigenetic regulation of the expression of Il12 and Il23 and autoimmune inflammation by the deubiquitinase Trabid. Nature immunology. 2016; 17: 259-268. Ref.: https://goo.gl/KonC54

Huibregtse JM, Yang JC, Beaudenon SL. The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase. Proceedings of the National Academy of Sciences of the United States of America. 1997; 94: 3656-3661. Ref.: https://goo.gl/as7SRp

Somesh BP, Sigurdsson S, Saeki H, Erdjument-Bromage H, Tempst P, et al. Communication between distant sites in RNA polymerase II through ubiquitylation factors and the polymerase CTD. Cell. 2007; 129: 57-68. Ref.: https://goo.gl/epiDCi

Gao M, Labuda T, Xia Y, Gallagher E, Fang D, Liu YC, et al. Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch. Science. 2004; 306: 271-275. Ref.: https://goo.gl/i32gz8

JC C. Armadillo repeat proteins: versatile regulators of plant development and signalling. Plant Cell Monographs. 2008; 10: 299-314. Ref.: https://goo.gl/4g68Wj

Lan W, Qiu S, Ren Y, Miao Y. Expression Profile and Function of HECT E3s in Arabidopsis thaliana. Acta Botanica Boreali-Occidentalia Sinica. 2017; 37: 2112-2119.

Fu H, Sadis S, Rubin DM, Glickman M, van Nocker S, Finley D, et al. Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcb1. The Journal of biological chemistry. 1998; 273: 1970-1981. Ref.: https://goo.gl/3Wj5Ab

Sharma M, Singh A, Shankar A, Pandey A, Baranwal V, et al. Comprehensive expression analysis of rice Armadillo gene family during abiotic stress and development. DNA research: an international journal for rapid publication of reports on genes and genomes. 2014; 21: 267-283. Ref.: https://goo.gl/tGkaqh

Wang H, Lu Y, Jiang T, Berg H, Li C, et al. The Arabidopsis U-box/ARM repeat E3 ligase AtPUB4 influences growth and degeneration of tapetal cells, and its mutation leads to conditional male sterility. Plant J. 2013; 74: 511-523. Ref.: https://goo.gl/nq6h3W

Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, et al. An "Electronic Fluorescent Pictograph" browser for exploring and analyzing large-scale biological data sets. PloS one. 2007; 2. Ref.: https://goo.gl/aHB14q

M H. Ubiquitin-dependent protein degradation. Annu Rev Genet. 1996; 30: 405-439.