Evaluation of cold response in Ilex paraguariensis

Main Article Content

Sandonaid Andrei Geisler
Carina Francisca Argüelles
Cristian Antonio Rojas*

Abstract

Ilex paraguariensis, also known as ‘Yerba mate’, occurs naturally in Argentina, Brazil and Paraguay and is also grown in these countries with different intensities. Leaves and branches of this plant are used in the preparation of a stimulant beverage that beside social importance has notorious health impact. However, the cultivated herbs present low productivity, due to deficiencies in cultivation and harvesting techniques, as well as due to the abiotic stresses that this species is subject to. The discovery and characterization of cold response mechanisms in plants such as Arabidopsis thaliana, began research in order to unravel the physiological and molecular mechanisms in response to cold in other plant species. In this work, we studied the physiological response observed in Ilex paraguariensis plants submitted to low temperatures (0°C), with or without a pre-moderate acclimatization treatment period of (8°C).


Our results suggest the existence of an acclimation response in Ilex paraguariensis, similar to that described in other species of the same temperature.

Article Details

Geisler, S. A., Argüelles, C. F., & Rojas, C. A. (2019). Evaluation of cold response in Ilex paraguariensis. Journal of Plant Science and Phytopathology, 3(1), 009–012. https://doi.org/10.29328/journal.jpsp.1001026
Research Articles

Copyright (c) 2019 Geisler SA, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Journal of Plant Science and Phytopathology is committed in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. In order to use the Open Access paradigm to the maximum extent in true terms as free of charge online access along with usage right, we grant usage rights through the use of specific Creative Commons license.

License: Copyright © 2017 - 2025 | Creative Commons License Open Access by Journal of Plant Science and Phytopathology is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at Heighten Science Publications Inc.

With this license, the authors are allowed that after publishing with the journal, they can share their research by posting a free draft copy of their article to any repository or website.

Compliance 'CC BY' license helps in:

Permission to read and download
Permission to display in a repository
Permission to translate
Commercial uses of manuscript

'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.

Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license. 

Rodolfo B. Sobre a Erva-mate. 2018: Ref.: https://goo.gl/1vQQvK

Mazur L, Peralta-Zamora G, Demczuk BJ, Ribani RH. Application of multivariate calibration and NIR spectroscopy for the quantification of methylxantines in yerba mate (Ilex paraguariensis). Journal of Food Composition and Analysis. 2014; 35: 55-60. Ref.: https://goo.gl/b127nn

Simeão RM, Sturion JA, Resende MDV, Fernandes JSC, Neiverth DD, et al. Avaliação genética em erva-mate pelo procedimento BLUP individual multivariado sob interação genótipo x ambiente. Pesquisa Agropecuária Brasileira, Brasíli. 2002; 3:.1589-1596. Ref.: https://goo.gl/u8G2Tz

Bracesco N, Sanchez AG, Contreras V, Menini T, Gugliucci A. Recent advances on Ilex paraguariensis research: minireview. J Ethnopharmacol. 2011; 136: 378-384. Ref.: https://goo.gl/Ckvwqp

Resende MDV, Sturion JA, Mendes S. Genética e melhoramento da erva-mate (Ilex paraguariensis St. Hil.). Colombo: EMBRAPA-CNPF. 1995; 33: Ref.: https://goo.gl/4AWnFG

Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Bio. 2000; 51: 463-499. Ref.: https://goo.gl/VZf4x7

Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 2002; 53: 247-273. Ref.: https://goo.gl/BsX2UB

Taiz L, Zeiger E. Plant Physiology. 3 ed. Ed Artmed, Porto Alegre. 2002. Ref.: https://goo.gl/1GTKoc

Palva ET, Heino P. Molecular mechanism of plant cold acclimation and freezing tolerance. Plant Cold Hardiness. Springer, Boston, MA. 1997; 3-14. Ref.: https://goo.gl/xTSFcR

Xin Z, Browse J. Cold comfort farm: the acclimation of plants to freezing temperatures. Plant, Cell & Environment. 23.9 2000; 893-902. Ref.: https://goo.gl/FyxFCh

Thohamashow, M. F. Plant cold acclimation, freezing tolerance genes and regulatory mecnisms. Annu Rev Plant Physiol Plant Mol Biol. 1999; 50: 571–599. Ref.: https://goo.gl/ThbcBD

Orvar BL, Sangwan V, Omann F, Dhindsa RS. Early steps in cold sensing by plant cells: The role of actin cytoskeleton and membrane fluidity. Plant J. 2000; 23: 785-794,. Ref.: https://goo.gl/mwvzTK

Knight H. Calcium signaling during abiotic stress in plants. Int Rev Cytol. 2000; 195: 269-325. Ref.: https://goo.gl/Ni94J2

Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Scienci. 1998; 280: 104-106. Ref.: https://goo.gl/x418ep

Rocha FR, Papini-Terzi FS, Nishiyama MY, Jr., Vêncio RZN, Vicentini R, et al. Signal transduction-related responses to phytohormones and environmental challenges in sugarcane. BMC Genomics. 2007; 8: 1-22. Ref.: https://goo.gl/5GppB5

Asnaghi C, Paulet F, Kaye C, Grivet L, Horau JY, et al. Target mapping of a sugarcane rust resistance gene (bru1) using bulked segregant analysis and AFLP markers. Theos Appl Genet. 2004; 108: 759-764. Ref.: https://goo.gl/dpcU7u

Janská A, Marsík P, Zelenková S, Ovesná J. Cold stress and acclimation–what is important for metabolic adjustment? Plant Biol. (Stuttg.). 2010; 12: 395–405. Ref.: https://goo.gl/7ErQow

Monroy AF, Sarhan F, Dhindsa R. Cold-Induced Changes in Freezing Tolerance, Protein Phosphorylation, and Gene Expression (Evidence for a Role of Calcium). Plant Physiol.1993; 102: 1227-1235. Ref.: https://goo.gl/n7S6ES

Shinwari ZK, Nakashima K, Miura S, Kasuga M, Seki M, et al. An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem Biophys Res Commun. 1998; 250: 161–170. Ref.: https://goo.gl/ugPuEW

Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin C, et al. Constitutive expression of the cold regulated Arabdopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci U S A. 1996; 93: 13404-13409. Ref.: https://goo.gl/x7yHgG

Cook D, Fowler S, Fiehn O, Thomashow MF. A prominent role for the CBF cold responsive pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci. 2004; 101: 15243-15248. Ref.: https://goo.gl/DoR6C6

Steponkus PL, Uemura MS, Joseph RA, Gilmour SJ, Thomashow MF. Mode os action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1998; 95: 14570-14575. Ref.: https://goo.gl/JyVQkQ