Magnitude of aphid infestation, root rot and rust disease of lentil
Main Article Content
Abstract
Lentil is the major cultivated pulse crop of Bangladesh. Even if there are available high-yielding modern varieties of this crop but because of the higher yield gap, its demand is largely met by import. Thus, to evaluate the pest-related factors of low yield seven modern lentil varieties viz. Binamasur-5, Binamasur-8, Binamasur-9, Binamasur-10, BARI Masur-5, BARI Masur-6, and BARI Masur-8 were assessed to enquire the extent of aphid infestation, foot rot and rust disease incidence, and severity on seed yield. The experiment was laid out in a Randomized complete block design during Rabi season at BINA Sub-station, Magura. Data on insects and disease were recorded at definite SMW (standard meteorological week) and DAS (days after sowing). Outcomes divulged that maximum aphid infestation (number of aphids/plant) was noted between 7th to 9th SMW; where BARI Masur-6 had significantly lowest infestation level on 7th and 8th SMW. Summative foot rot disease incidence (%) was most in Binamasur-8 and Binamasur-9, but least in BARI Masur-6 and Binamasur-5. For rust, the highest incidence (%) was recorded with Binamasur-8 and Binamasur-5; contrary the lowest was seen with BARI Masur-6 and BARI Masur-8. Severity index (DSI) of foot and root rot was abundant by Binamasur-8 (72.89%) and Binamasur-9 (71.56%); conversely, Binamasur-10 (52.11%) and BARI Masur-8 (50%) had scarce DSI. In the case of rust, BARI Masur-5 (74.00%) showed top DSI accompanied by Binamasur-8 (58.33%). The utmost seed yield of 8.25 g/plant was produced by Binamasur-10; in contrast, the least was yielded by Binamasur-8 (5.45 g/plant). Weather factors (temperature, relative humidity, rainfall) were positively related to the number of aphids per plant. However, seed yield was negatively affected by aphid population, foot rot, and rust disease incidence. Overall, Binamasur-10 corroborated having better resilience to biotic and abiotic factors for delivering desirable economic yield
Article Details
Copyright (c) 2022 Chowhan S, et al.

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Journal of Plant Science and Phytopathology is committed in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. In order to use the Open Access paradigm to the maximum extent in true terms as free of charge online access along with usage right, we grant usage rights through the use of specific Creative Commons license.
License: Copyright © 2017 - 2025 | Open Access by Journal of Plant Science and Phytopathology is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at Heighten Science Publications Inc.
With this license, the authors are allowed that after publishing with the journal, they can share their research by posting a free draft copy of their article to any repository or website.
Compliance 'CC BY' license helps in:
Permission to read and download | ✓ |
Permission to display in a repository | ✓ |
Permission to translate | ✓ |
Commercial uses of manuscript | ✓ |
'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.
Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license.
Anonymous. CGIAR Research: Areas of research; lentil (Lens culinaris M). 2003: 23.
DAE (Department of Agricultural Extension). Pest risk analysis (PRA) of pulses in bangladesh, strengthening phytosanitary capacity in Bangladesh project plant quarantine wing, DAE, Khamarbari, Farmgate, Dhaka. 2017; 220. http://dae.portal.gov.bd/sites/default/files/files/dae.portal.gov.bd/page/902599be_5f17_4c92_9a29_676fd187c1cc/01.%202017_Final_Report_PRA_Pulse_SPCB%2C%20DAE_CRDS.pdf
FAOSTAT. Crops and livestock products: lentil, Bangladesh. 2022. https://www.fao.org/faostat/en/#data/QCL
BBS (Bangladesh Bureau of Statistics). Yearbook of agricultural statistics-2020. 32nd series, planning division, ministry of planning, Dhaka, Bangladesh; 2020; 92-98. https://drive.google.com/file/d/1UspiEI_SZz4qCPZUlRWE-dP3Ww68ZeL5/view?usp=sharing
Sharma OP, Singh SK, Vennila S, Bhagat S, Saini MR, et al. Technical Bulletin no. 2014; 36.
Collinge SK. Effects of grassland fragmentation on insect species loss, colonization, and movement patterns. Ecology. 2000. 81: 2211–2226.
GLRP. Annual Report 2068/69 (2011/12). Grain legumes research program, NARC, Rampur, Chitwan, Nepal. 2012.
Neupane S, Subedi S, Darai R. Field screening of lentil genotypes against aphid infestation in inner Tarai of Nepal. J Nepal Agri Res Council. 2020; 6: 79–84.
Kishor DR, Prasad R, Moses S, Singh PP. Population dynamics of aphid and pod borer on lentil and their natural enemies during rabi Season 2017 at Pusa, Samastipur. Curr J Appl Sci Technol. 2019; 32: 1-6.
Hoque MA, Hamim I, Haque MR, Ali MA, Ashrafuzzaman M. Effect of some fungicides on foot and root rot of lentil. Univer J Plant Sci. 2014; 2: 52-56.
Anonymous. Annual report 1985-86. Plant Pathology Division. Bangladesh Agri Res Institute. 1986; l9.
Das IR, Bhuiyan MKA, Jannat R, Kayesh E, Rubayet MT, et al. Effect of bio-fortified compost in controlling soil-borne diseases of lentil (Lens culinaris L.) and enhance the crop growth and yield. Advan Bio Earth Sci. 2019; 4: 93-106. Available on: http://jomardpublishing.com/UploadFiles/Files/journals/ABES/V4N2/Das%20et%20al.pdf
Chang KF, Hwang SF, Gossen BD, Turnbull GD, Wang H, et al. Effects of inoculum density, temperature, seeding depth, seeding date and fungicidal seed treatment on the impact of Rhizoctonia solani on lentil. Canadian J Plant Sci. 2008; 88: 799-809.
Faruk MI, Islam MM, Khatun F. Formulation of eco-friendly management package against seedling disease caused by Sclerotium rolfsii of lentil. Am J Bio Sci. 2020; 8: 65-72.
Mitiku M. Management of root rot diseases of cool season food legumes with special emphasis on lentil (Lens culinaris), faba bean (Vicia faba) and chickpea (Cicer arietinum) in Ethiopia. J Nat Sci Res. 2017; 7: 14-20. https://www.iiste.org/Journals/index.php/JNSR/article/view/36677/37691
Ahmed D, Shahab S. Studies on interaction of Meloidogyne incognita (kofoid and white) Chitwood and Fusarium solani (Mart.) Sacc forming a disease complex in lentil (Lens culinaris Medik.). Arch Phytopathol Plant Protection. 2018; 51: 338-348.
Vandemark GJ, Porter LD. First report of lentil root rot caused by Aphanomyces euteiches in Idaho. Plant Dis. 2010; 94: 480-480. PubMed: https://pubmed.ncbi.nlm.nih.gov/30754501/
Musheer N, Ashraf S, Choudhary A, Kumar M, Saeed S. Role of microbiotic factors against the soil-borne phytopathogens. 2020; 251- 280.
Aycock R. Stem rot and other diseases caused by S. rolfsii. Technical Bulletin No. 174. Agric Expt Station North Carolina State University, Raleigh. 1966; 202.
BARI (Bangladesh Agricultural Research Institute). Annual Report (2020-2021), BARI, Gazipur. 2021; 365-368.
Arti J, Tripathi HS. Studies on epidemiology of lentil rust (Uromyces viciae fabae). Indian Phytopathol. 2012; 65: 67-70. http://epubs.icar.org.in/ejournal/index.php/IPPJ/article/view/16092/7836
Khare MN, Bayaa B, Beniwal SPS. Selection methods for disease resistance in lentil, p. 107-121. In: “Breeding for Stress Tolerance in Cool-Season Food Legumes” (Singh KB, Saxena MC, eds.). John Wiley and Sons, Chichester, U.K. 1993.
Singh K, Jhooty JS, Cheema HS. Assessment of losses in lentil yield due to rust caused by Uromyces fabae. Lens Newsletter. 1986; 13: 28. https://agris.fao.org/agris-search/search.do?recordID=QV8700014
Sepulveda RP. Effect of rust caused by Uromyces fabae (Pers) de bary on the yield of lentil. Agric Technol. 1985; 45: 335-339.
Garkoti A, Kumar S, Lal M, Singh V. Major diseases of lentil: epidemiology and disease management-a review. Agriways. 2013; 1: 62-64. http://www.agriwaysjournal.com/wp-content/uploads/journals/volume1.1/MAJOR%20DISEASES%20OF%20LENTIL%20EPIDEMIOLOGY%20AND%20DISEASE%20MANAGEMENT-%20A%20REVIEW.pdf
Anonymous. Annual Report 1994-1995. Bangladesh Instit Nucl Agri. 1997; 186-189.
Bakr MA. Check list of pulse diseases in Bangladesh. Bangladesh J Plant Pathol. 1994; 10: 13-16.
Bakr MA, Ahmed HU, Mian MAW. Proceedings of the national workshop on Strategic intervention on plant pathological research in Bangladesh. 11-12 February 2007, Bangladesh Agricultural Research Institute, Joydebpur, Gazipur. 2007; 244.
FRG (Fertilization Recommendation Guide). Bangladesh Agri Res Council (BARC). Farmgate, Dhaka. 2012; 1215: 01-258.
Chowhan S, Nahar K. Evaluating the Role of Fertilizer and Seed Soaking on Direct Seeded Aus Rice Varieties. Acta Sci Agri. 2022; 6: 02-17.
BINA. Leaflet of Binamasur-8 and Binamasur-9 (In Bengali). 2014. http://bina.portal.gov.bd/sites/default/files/files/bina.portal.gov.bd/page/e598357f_0ebb_46a4_ad26_3b0bbfc4f815/Binamasur-8%20%26%209.pdf
BINA (Bangladesh Institute of Nuclear Agriculture). Weather status, HOBOlink- Magura. 2020. https://www.hobolink.com/p/b82909d639dbdd5f400a7f2a5b54b5a0
Ghosh SR, Chowhan S, Roy S, Roy DC, Ali MKJ, et al. Adjusting planting time of Binadhan-17 in boro Season. J Phytol. 2021; 13: 21-27.
Ahmed F, Hasna MK, Emon RM. Ecofriendly disease management of lentil (Lens culinaris) seedlings. Agri Sci. 2021; 12: 1555-1564.
Nene YL, Haware MP, Reddy MV. Chickpea diseases: resistance-screening techniques. ICRISAT Information Bulletin. 1981; 10: 1-10. http://oar.icrisat.org/id/eprint/1080
Kim HS, Hartman GL, Manandhar JB, Graef GL, Steadman JR, et al. Reaction of soybean cultivars to sclerotinia stem rot in field, greenhouse and laboratory evaluations. Crop Sci. 2000; 40: 665–669.
Statistix. Data analysis software for researchers (Version 10.0). Analytical Software, 2105 Miller Landing Rd, Tallahassee Florida 32312, USA. 2021.
Gomez KA, Gomez AA. Statistical producers for agricultural research. A Wiley Int. Sci. Pub. John Wiley and Sons, New York, Brisbane, Singapore. 1984; 139-240.
Russell DF. MSTAT-C computer package programme. Crop and Soil Sci Dept, Michigan State University, US. 1986.
Islam MS. Effect of sowing time and lentil varieties on incidence of insect pests and their predators. MS Thesis. Department of Entomology, Sher-e-Bangla Agricultural University Dhaka 1207, Bangladesh. 2009; 10-81. http://www.saulibrary.edu.bd/daatj/public/index.php/getDownload/SAU200901_75-08-03171_11.pdf
El Fakhouri K, Sabraoui A, Kehel Z, El Bouhssini M. Population dynamics and yield loss assessment for pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae), on lentil in Morocco. Insects. 2021; 12: 1080.
Farhana SNMD, Bivi MR, Khairulmazmi A, Wong SK, Sariah M. Morphological and molecular characterization of Phytophthora capsici, the causal agent of foot rot disease of black pepper in Sarawak, Malaysia. Int J Agri Biol. 2013; 15: 1083-1090. https://www.fspublishers.org/Issue.php?no_download=published_papers/70113_..pdf&issue_id=3185.
Negussie TG, Pretorius ZA. Yield loss of lentil caused by Uromyces viciae-fabae. South African J Plant Soil. 2008; 25: 32-41.
Roy S, Roy DC, Noor MMA, Ghosh SR, Ahmed F, et al. Binamasur-10, the first drought tolerant lentil variety registered in Bangladesh. Res Agri Livestock Fisheries. 2019; 6: 253-262.
Salve RS, Sonkamble MM, Patil SK. Population dynamics of major insect pests of brinjal. Indian J Entomol. 2021; 83: 16–20.
Zada H, Aur S, Ahmad S. Effect of abiotic factors on population dynamics of apple codling moth Cydia Pomonella (L) (Lepidoptera; Tortricidae) at Kalam Swat Pakistan. J Soil Sci Plant Physiol. 2020; 2: 128. https://www.researchgate.net/deref/https%3A%2F%2Fdoi.org%2F10.36266%2FJSSPP%2F128
Kumar A, Kumar A. Effect of abiotic and biotic factors on incidence of pests and predator in cowpea [Vigna unguiculata (L.) walp.]. Legume Res. 2015; 38: 121-125.
Agrawal AA, Underwood N, Stinchcombe JR. Intraspecific variation in the strength of density dependence in aphid populations. Eco Entomol. 2004; 29: 521-526.
Paudel S, Bechinski EJ, Stokes BS, Pappu HR, Eigenbrode SD. Deriving economic models for pea aphid (Hemiptera: Aphididae) as a direct-pest and a virus-vector on commercial lentils. J Economic Entomol. 2018; 111: 2225-2232. PubMed: https://pubmed.ncbi.nlm.nih.gov/29982566/
Bedasa T, Zewdie A. Evaluation of lentil varieties and seedbed types for the management of lentil Fusarium wilt disease (Fusarium oxysporum f. sp. lentis) in central highlands of Ethiopia. Afri J Agri Res. 2019; 14: 1012-1019.