Snapshot of the Involvement of Glutathione in Plant-Pathogen Interactions

Main Article Content

Aparupa Bose Mazumdar Ghosh
Sharmila Chattopadhyay*

Article Details

Ghosh, A. B. M., & Chattopadhyay, S. (2023). Snapshot of the Involvement of Glutathione in Plant-Pathogen Interactions. Journal of Plant Science and Phytopathology, 7(2), 039–041. https://doi.org/10.29328/journal.jpsp.1001103
Research Articles

Copyright (c) 2023 Ghosh ABM, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Journal of Plant Science and Phytopathology is committed in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. In order to use the Open Access paradigm to the maximum extent in true terms as free of charge online access along with usage right, we grant usage rights through the use of specific Creative Commons license.

License: Copyright © 2017 - 2025 | Creative Commons License Open Access by Journal of Plant Science and Phytopathology is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at Heighten Science Publications Inc.

With this license, the authors are allowed that after publishing with the journal, they can share their research by posting a free draft copy of their article to any repository or website.

Compliance 'CC BY' license helps in:

Permission to read and download
Permission to display in a repository
Permission to translate
Commercial uses of manuscript

'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.

Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license. 

Gullner G, Zechmann B, Künstler A, Király L. The Signaling Roles of Glutathione in Plant Disease Resistance. In Glutathione in Plant Growth, Development, and Stress Tolerance, 1st ed.; Hossain, M.A., Mostofa, M.G., Diaz-Vivancos, P., Burritt, D.J., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 331–357.

Ghanta S, Bhattacharyya D, Sinha R, Banerjee A, Chattopadhyay S. Nicotiana tabacum overexpressing γ-ECS exhibits biotic stress tolerance likely through NPR1-dependent salicylic acid-mediated pathway. Planta. 2011 May;233(5):895-910. doi: 10.1007/s00425-011-1349-4. Epub 2011 Jan 15. PMID: 21234598.

Ghanta S, Datta R, Bhattacharyya D, Sinha R, Kumar D, Hazra S, Mazumdar AB, Chattopadhyay S. Multistep involvement of glutathione with salicylic acid and ethylene to combat environmental stress. J Plant Physiol. 2014 Jul 1;171(11):940-50. doi: 10.1016/j.jplph.2014.03.002. Epub 2014 Mar 14. PMID: 24913051.

Gullner G, Tóbiás I, Fodor J, Kömives T. Elevation of glutathione level and activation of glutathione-related enzymes affect virus infection in tobacco. Free Radic Res. 1999 Dec;31 Suppl:S155-61. doi: 10.1080/10715769900301451. PMID: 10694054.

Clemente-Moreno MJ, Díaz-Vivancos P, Barba-Espín G, Hernández JA. Benzothiadiazole and l-2-oxothiazolidine-4-carboxylic acid reduce the severity of Sharka symptoms in pea leaves: effect on antioxidative metabolism at the subcellular level. Plant Biol (Stuttg). 2010 Jan;12(1):88-97. doi: 10.1111/j.1438-8677.2009.00204.x. PMID: 20653891.

Zechmann B, Zellnig G, Müller M. Virus-induced changes in the subcellular distribution of glutathione precursors in Cucurbita pepo (L.). Plant Biol (Stuttg). 2007 May;9(3):427-34. doi: 10.1055/s-2006-924670. Epub 2006 Dec 4. PMID: 17143806.

Dron M, Clouse SD, Dixon RA, Lawton MA, Lamb CJ. Glutathione and fungal elicitor regulation of a plant defense gene promoter in electroporated protoplasts. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6738-42. doi: 10.1073/pnas.85.18.6738. PMID: 16593981; PMCID: PMC282053.

Wingate VP, Lawton MA, Lamb CJ. Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol. 1988 May;87(1):206-10. doi: 10.1104/pp.87.1.206. PMID: 16666104; PMCID: PMC1054726.

Edwards R, Blount JW, Dixon RA. Glutathione and elicitation of the phytoalexin response in legume cell cultures. Planta. 1991 Jun;184(3):403-9. doi: 10.1007/BF00195343. PMID: 24194159.

May MJ, Hammond-Kosack KE, Jones J. Involvement of Reactive Oxygen Species, Glutathione Metabolism, and Lipid Peroxidation in the Cf-Gene-Dependent Defense Response of Tomato Cotyledons Induced by Race-Specific Elicitors of Cladosporium fulvum. Plant Physiol. 1996 Apr;110(4):1367-1379. doi: 10.1104/pp.110.4.1367. PMID: 12226267; PMCID: PMC160932.

Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, Mauch F. Identification of PAD2 as a gamma-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J. 2007 Jan;49(1):159-72. doi: 10.1111/j.1365-313X.2006.02938.x. Epub 2006 Nov 27. PMID: 17144898.

Glazebrook J, Ausubel FM. Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8955-9. doi: 10.1073/pnas.91.19.8955. PMID: 8090752; PMCID: PMC44725.

Datta R, Chattopadhyay S. Changes in the proteome of pad2-1, a glutathione depleted Arabidopsis mutant, during Pseudomonas syringae infection. J Proteomics. 2015 Aug 3;126:82-93. doi: 10.1016/j.jprot.2015.04.036. Epub 2015 May 30. PMID: 26032221.

Roetschi A, Si-Ammour A, Belbahri L, Mauch F, Mauch-Mani B. Characterization of an Arabidopsis-Phytophthora pathosystem: resistance requires a functional PAD2 gene and is independent of salicylic acid, ethylene and jasmonic acid signalling. Plant J. 2001 Nov;28(3):293-305. doi: 10.1046/j.1365-313x.2001.01148.x. PMID: 11722772.

Ferrari S, Plotnikova JM, De Lorenzo G, Ausubel FM. Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J. 2003 Jul;35(2):193-205. doi: 10.1046/j.1365-313x.2003.01794.x. PMID: 12848825.

Datta R, Kumar D, Sultana A, Hazra S, Bhattacharyya D, Chattopadhyay S. Glutathione Regulates 1-Aminocyclopropane-1-Carboxylate Synthase Transcription via WRKY33 and 1-Aminocyclopropane-1-Carboxylate Oxidase by Modulating Messenger RNA Stability to Induce Ethylene Synthesis during Stress. Plant Physiol. 2015 Dec;169(4):2963-81. doi: 10.1104/pp.15.01543. Epub 2015 Oct 13. PMID: 26463088; PMCID: PMC4677924.

Matern S, Peskan-Berghoefer T, Gromes R, Kiesel RV, Rausch T. Imposed glutathione-mediated redox switch modulates the tobacco wound-induced protein kinase and salicylic acid-induced protein kinase activation state and impacts on defence against Pseudomonas syringae. J Exp Bot. 2015 Apr;66(7):1935-50. doi: 10.1093/jxb/eru546. Epub 2015 Jan 26. PMID: 25628332; PMCID: PMC4378631.

Boro P, Sultana A, Mandal K, Chattopadhyay S. Interplay between glutathione and mitogen-activated protein kinase 3 via transcription factor WRKY40 under combined osmotic and cold stress in Arabidopsis. J Plant Physiol. 2022 Apr;271:153664. doi: 10.1016/j.jplph.2022.153664. Epub 2022 Mar 5. PMID: 35279560.